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MOSES
Outline — Instrument

• MOSES instrument concept

• Rocket instrument

• Benefits and costs

• Design approach for Solar Orbiter

• Specific design possibilities

• Conclusions
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MOSES
MOSES—Multi-Order

Solar EUV Spectrograph
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MOSES
Rocket Instrument

CCD Housing (1 of 3)

LOTS
Folding Flat

Objective GratingRead-Out Electronics

1. Flight hardware complete—February, 2004

2. Calibration, I&T—Spring, 2004

3. Flight—Summer, 2004
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MOSES
Benefits and Costs

Benefits:

• Speed (100− 1000× comparable slit

spectrograph)

• Simultaneity (no scanning in space or

spectrum)

Costs:

• Detector real estate

• Inversion
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MOSES
Design Approach for Orbiter

1. Establish constraints (telemetry, volume,

mass)

2. Choose lines and parameters to measure

3. Choose orders and dispersion

4. Verify inversion

5. Iterate & optimize
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MOSES
Design Possibilities

• Gregorian layout

– Magnification (compactness)

– Field stop (edge effects, spectral selectivity)

– TVLS gratings (Poletto & Thomas 2003)

• Multiple orders per detector

– More spectral parameters, less ambiguity

– Trade off: more detectors, or multiple orders per detector

Example: 4 k× 4 k detector, 75 km pixels, 4 orders,

150,000 km FOV (leaving 96 pixel margin between orders).
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MOSES
Conclusions

• New capability: simultaneous measurement of spectral

parameters in a narrow band, over a large 2D field of

view.

• Propose specific observables as a starting point for design

(Thanks Ben!)
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MOSES
Inversion—Outline

• Inversion problems in solar physics

• Tomography in hybrid space (x, λ)

• Fourier backprojection

• Pixon reconstruction

• Discussion

• Conclusions

• Next Steps
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MOSES
Inversion

Inversion problems are endemic to remote sensing, and to

solar physics in particular:

• MOSES

• Differential emission measure

• Coded-aperture imagers (HXT, RHESSI)

• Magnetography

For example, magnetography requires simplifying assumptions

about the spectrum in a pixel.
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MOSES
Inversion = Tomography

I−(x− λ) I0(x) I+(x + λ)

Images at n = −1, 0, +1

λ

x

Object v(x, λ)
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MOSES
Fourier Backprojection

• Each projection corresponds

to a slice in the Fourier

transform of I(x, λ).
• Include horizonal

projection,I∞(λ) =∫
I(x, λ) dx

• Iterate to enforce

I(x, λ) > 0.

kλ

kx

n = ∞ (constructed)

n
=
−1

n
=

0

n
=

+1
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MOSES
Characterizing I∞(λ)

The inversion relies on knowing I∞(λ), which is not

measured directly.

• He ii line center can be derived from the data (and the 3

orders co-aligned) by cross-correlation.

• He ii line width can be inferred in at least two ways:

– Knowledge of typical solar values plus instrumental

linewidth.

– Convergence of iteration for non-negativity.

• Si xi contribution does not significantly influence results for

He ii profile.
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MOSES
Fourier Results
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MOSES
Pixon Reconstruction

• Incomplete fuzzy Pixon

basis

• χ2 goodness of fit

• Fit the data using the least

information.

• Include horizonal projection
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MOSES
Pixon Results
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MOSES
Comparison of results

Differences between true and reconstructed line profile

parameters. Line center and linewidth errors are in pixels. For

each parameter, a mean offset and RMS error are given. One

MOSES pixel is approximately 20 mÅ (20 km/s at 304 Å).

center (median) width (quartiles 1-3)
Algorithm mean RMS mean RMS

Fourier -0.01 0.32 -0.19 0.97
Pixon -0.04 0.36 -0.04 0.59
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MOSES
Slit spectrograph

He II line centroid (pixels)
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Centroiding error due to Poisson noise only.
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MOSES
MOSES backprojection

He II line centroid (pixels)
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The glass is half full: if error is systematic, perhaps it can be

corrected.
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MOSES
Conclusions

• Inversion demonstrated by both Fourier and Pixon methods.

• He ii is recovered, but not the weaker Si xi.

• Doppler shift reconstructed to 1
3-pixel accuracy.

• Linewidth is reconstructed best by pixons (0.6 pixel).

• Exploring several avenues to improve performance.

A paper is in press for Proc. SPIE. Preprints available upon

request.
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MOSES
Next Steps

• Complete the Pixon algorithm (Fox & Metcalf).

• Parametric forward modeling (Fox).

• Understand and correct systematic errors in reconstruction.

• Quantify benefits of adding more orders (Theissen).

• Simulation/validation of specific wavelength options for

Orbiter (Dobke).
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MOSES
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