
Interactive Data Language Guide

Chris Lowder

May 10, 2010

Contents

1 WebGDL 3
1.1 Web access . 3
1.2 Command layout . 3
1.3 Persistence of files . 4

2 Introduction to Programming 5
2.1 IDL Prompt . 5
2.2 Variables . 6

2.2.1 Scalar . 6
2.2.2 Vectors and arrays . 7
2.2.3 Structures . 7

2.3 Mathematical and String Operations 9
2.3.1 Normal math operators 9
2.3.2 String operators . 9
2.3.3 Boolean logic . 10
2.3.4 Sizing . 12

2.4 Display . 12
2.4.1 Print . 12
2.4.2 Plot . 13
2.4.3 TV and TVSCL . 14

2.5 Writing it down . 15
2.5.1 Program template . 15
2.5.2 Function template . 16
2.5.3 The importance of comments 16

2.6 Program control statements 17
2.6.1 IF statement . 17
2.6.2 FOR loop . 18
2.6.3 WHILE loop . 18

1

2.7 Other tricks . 19
2.7.1 Save files . 19
2.7.2 Debug mode . 19

3 Getting to know Linux 20
3.1 The terminal . 20
3.2 Terminal commands . 20

3.2.1 Listing a directory . 20
3.2.2 Changing directory . 21
3.2.3 Creating a directory 22
3.2.4 Copying, moving, and renaming files 22
3.2.5 Deleting files and directories 24

3.3 Other terminal tricks . 24
3.3.1 Home directory shortcut 24
3.3.2 Tab autocomplete . 25
3.3.3 Wildcard tool . 25
3.3.4 Manual files . 25

2

Chapter 1

WebGDL

In your time as an REU student, you’ll most likely be coding in the IDL
language, or Interactive Data Language. This software is installed on the
main solar servers, and you’ll connect remotely from another machine to run
the programs you design. Since you won’t be able to access an IDL compiler
until you arrive for the program, we’ve found a free alternative that you can
play about in. Think of it as a sandbox to experiment with coding in IDL
before you begin your research.

1.1 Web access

A link will be provided to you via email that will enable use of the WebGDL
interface. For server security reasons, please do not share this address with
anyone online. Thanks!

1.2 Command layout

There are several sections laid out in the online interface. There is a graphic
window in the upper left corner, a command line below this, and a file system
to the right. Commands are entered into the command line one at a time,
or run through in a series as defined in a program (.pro file).

3

1.3 Persistence of files

To keep your programs intact between online sessions, it would be wise to
compose them in an external program, such as notepad. One can then copy
and paste the code into the WebGDL interface as a .pro file. After success-
fully debugging and running any potential code online, one can simply copy
and paste the entire program back into your local machine for safe-keeping.

4

Chapter 2

Introduction to Programming

While computers are quite quick to perform calculations, all of this raw power
is useless without some sort of purpose to it. Programming, from the earliest
days of punching code into notecards to now punching code on a keyboard,
is designed with the intent to harness this raw computing power purposefully
and efficiently.

There are many languages in which one can program a computer, and
IDL is just one of many. Just as many actual languages share the same
structure and sentence components, computer languages are quite similar.
Much of the logic and structure is identical across languages, and ultimately
it comes down to the syntax where things differ. So, let’s learn the syntax.

2.1 IDL Prompt

Begin by opening the GDL / IDL program in a terminal. After an opening
sequence it should display a small, lonely prompt of,

GDL>

You can enter commands directly into the prompt, or choose to write a
series of commands bundled together in a program file. We’ll be dealing more
with writing code into a program file, and then compiling and executing that
program in the prompt.

5

2.2 Variables

Similarly to the memory function on a calculator, variables enable an IDL
program to store information. Note that information implies that a number
of things can be stored in a variable. This includes arrays of numbers and
even text! There are many classifications for a variable, but we’ll just cover
a few that will be more relevant to your project.

2.2.1 Scalar

Integer

An integer is a whole number, defined in a way such as:

a = 42

Float

A floating number allows the variable to contain non-integer numbers, such
as:

b = 42.23

Or even,

c = 42.

You may ask yourself, why go to all the trouble of adding that period for
the definition of our variable c? What’s the difference between 42. and 42?
When doing any sort of math operations between our variables a, b, and c
here, the careful programmer wants to make sure that all variables involved
in an operation are of the same data type. If this isn’t the case... strange
things will soon become afoot.

String

A string is a series of text characters stored into a variable. To define a
string, one would issue the command,

d = ’I do not like Spam!’

Now, just as there are operations to act on our numerically oriented
variables, there are operations which act on string variables as well. We’ll
discuss some of these a bit later.

6

2.2.2 Vectors and arrays

Just as a string is nothing more than a series of letters arranged in a particular
order, an array is most often just a series of numbers arranged in a particular
order. You could define one as,

f = [1, 2, 3, 4, 5]

Numbers can then be referenced based on their position within the array.
For instance, to access the third element in the array,

print, f[2]

This is quite strange, however, as I thought we wanted the third element
in the array. As it turns out, IDL references elements in an array beginning
with 0. So to access the first element, one would use the command,

print, f[0]

Arrays, however, aren’t limited to just one dimension though. They can
extend even beyond the perceivable three dimensions. To define an array of
numbers, the simplest way is via,

g = fltarr(dim1, dim2, dim3, ...)

h = intarr(dim1, dim2, dim3, ...)

Where fltarr will create an array of float-type variables, and intarr will do
the same with integers. Note that the number of elements in each dimension
are then listed. For example, to create a 512 by 512 by 100 array of floating
numbers,

i = fltarr(512, 512, 100)

2.2.3 Structures

Just as we defined earlier a regular number variable, and then an array
of those individual numbers, we can also go one step further. Think of a
structure as a way to group together multiple sorts of information into one
package. The information doesn’t even need to be of the same type! You can
bundle together strings, numbers, and even arrays into your structure. This

7

makes dealing with large datasets a little easier. Now, how do we visualize,
define, and then access these structures?

The visualization step is crucial to understand how your data is floating
around inside IDL’s memory. Let’s say we have a particular star that is of
interest to us, and we wish to bundle several bits of data together regarding
this star. First, the structure must have an overall name, let’s call it... ’star.’
Think of this as a large folder, which can contain many smaller folders. We
can then define sub-categories within our ’star’ structure.

star.

name
(string)

id
(integer)

spectral
(string)

position
(array)

To actually define the above structure, we’d use the following command,

star = CREATE_STRUCT(’name’, ’sol’,\\

’id’, 0, ’spectral’, ’G’, ’position’, [0,0])

This will create the structure ’star’, with the elements that we’ve provided
it. Now, how does one retreive this stored information. The command, ”help,
star”, won’t yield very much useful information. Instead, we must append
the tag, /str, so that IDL knows what it is dealing with. This is accomplished
via, ”help, star, /str” This should print all of the sub-structure elements con-
tained in our structure, as well as the data-type of each.

To access the data in any of these fields, simply type the structure name,
a period, and then the field name. For instance, to print the coordinates of
the given star, we’d type,

print, star.position

We can then either recall this information for use, or even make modifi-
cations to the entry in this fashion.

8

2.3 Mathematical and String Operations

2.3.1 Normal math operators

For the types of variables we’ve defined thus far, the regular mathematical
operations you’re used to will work. For instance, try the following commands
in the IDL prompt, and study the results.

print, b + c

print, b - c

print, b / c

print, b * c

And as you might guess from the statement above, the print command
can output operations as well as regular variables. Also note the keyboard
characters used for the division and multiplication operations.

2.3.2 String operators

Now strings are another story altogether. You can’t exactly add ’I do not
like Spam!’ to ’Some other string’ in the traditional sense. That just doesn’t
make any sense. But, strings can be thought of as a sequence of letters which
can be broken up, combined, and rearranged.

First of all, the addition command will work, but not in the way one is
used to. For example, consider the command,

print, ’I do not ’ + ’like Spam!’

Which outputs,

I do not like Spam!

In this case, the addition operator simply appends the strings to one
another, creating a new string containing both.

Say we now wish to break a string apart into multiple chunks. To accom-
plish this, we’ll use the command, strmid. Consider the following general
command structure,

print, strmid(string, lettertostartbreakingat, numberofletterstobreakoff)

9

And consider the example now,

theword = ’something’

print, strmid(theword, 4, 5)

These commands will define the string, theword, and then print the chunk
of it displaying, thing.

2.3.3 Boolean logic

While humans are truly capable of thinking in shades of grey, the computer
is not so lucky. Boolean logic can be used to compare sets of numbers, arrays,
etc, based on the premise that the state 1 is true, and that 0 is false. For
instance, let’s say we wish to compare two numbers, to see which is larger.
First, we can make sure they aren’t equal,

print, 5 eq 4

0

The command eq will check to see if the two statements are equal, in
which case it will return 1, and otherwise, 0. The corresponding command,
ne, will check to see if the two elements are not equal. While on the subject
of reverse commands, one can reverse any logic statement with the addition
of the ∼ character. For instance,

print, ~(5 eq 4)

1

One can also use the standard suite of greater than, greater than or equal
to, less than, and less than or equal to, expressed respectively below.

print, 5 gt 4

1

print, 5 ge 4

1

print, 5 lt 4

0

10

print, 5 le 4

0

Boolean statements can also be combined via the and or the or com-
mands. They require the component boolean statements to either both be
true, or for at least one to be true, respectively. For further study, consider
the two examples below.

print, (2 gt 1) and (1 lt 2)

1

print, (7 gt 3) or (2 gt 6)

1

Now, one can also compare matricies using boolean logic. For sake of
argument, let’s say we wished to isolate the elements of a 5x5 array that are
greater than a particular value. Consider the matrix, m, below.

3 5 1 0 6
8 2 1 4 3
2 8 6 2 3
0 1 8 2 6
2 5 3 3 9

We can in essence create a ’mask’ using boolean logic to pick out the val-

ues greater than a certain value, say 2. To create this mask, we can use the
regular boolean logical statements, except that now it will return a matrix
of boolean values, rather than just a single number.

The command,

mask = m gt 2

will yield the boolean matrix,
1 1 0 0 1
1 0 0 1 1
0 1 1 0 1
0 0 1 0 1
0 1 1 1 1

We can then multiply this mask by our original array, and only those

values that meet our criteria will remain!

11

2.3.4 Sizing

Knowing the size of a vector or array is quite important when dealing with
them in a more automated program. For a one-dimensional array, we can
use the command, n_elements.

m = [1,2,3,4,5]

print, n_elements(m)

5

When dealing with a two-dimensional (OR MORE) matrix, we need to
employ the size command.

m = [[1,2,3],[4,5,6],[7,8,9]]

print, (size(m))[1]

print, (size(m))[2]

The output will return the number of columns and rows, respectively. For
futher information on the output parameters of size, see the IDL help files.

2.4 Display

Now, we’ve learned how to manipulate data within IDL. However, we still
need a useful way to output this data, or all of it will be in vain

2.4.1 Print

You’ve seen the print command through usage in almost all of the preceed-
ing examples. So hopefully you should be familiar with it’s usage by now.
However, were you aware that you can also print multiple items on the same
line? For instance,

print, a, b, c, d

12

2.4.2 Plot

Now, the print command is useful for single number variables, strings, and
perhaps small vectors and arrays. However, for arrays with a large number
of items, or for situations where direct visualization of your data is simpler,
plot is the way to go. Try the following command.

v = [0,1,2,3,5,7,11,13,17]

plot, v

You can see that IDL plotted each number accordingly, with values spec-
ified on the y-axis. One can supplement the plot command with many op-
tions, one of which defines the line-type. For instance, by using a command
such as,

plot, v, psym=5

plot, v, psym=10

13

One can produces plots similar to those below. Try different values of
psym to suit the data that you are plotting.

In addition to plotting single arrays on the same plot, one can overlay
multiple plots together by simply plotting the initial dataset as usual, and
then calling plot again, but replacing plot with the command oplot. IDL will
not rescale your plot, so make sure to plot the data with the largest range
first.

plot, a, psym=1

oplot, b, psym=2

2.4.3 TV and TVSCL

Now, plotting is very useful for one-dimensional vectors, but what of 2d
arrays? For this, we can use the tv command to display the data. Let’s
generate a random 512x512 array, and use IDL to display the resulting data.
Notice that we artificially scale the data within the TV command to allow
IDL to show more of the range within the plot. Note also that the TVSCL
command should do this automatically, but this command is for some reason
not included within GDL.

m = randomn(1, 512, 512)

tv, m*1000

This seems terribly useless at the moment, given that we’re just displaying
random noise. However, this will prove much more useful in the future.

14

2.5 Writing it down

At this point, we’ve reviewed many useful commands that can be entered
within the command line. However, to allow tasks that are more automated,
we need to begin creating IDL script programs that can be run. One can
write down a series of commands, that the program will execute in sequence.
One point to note, however, is that unless declared in the program statement,
the variables created and used within the program will not survive in memory
after having run the program.

2.5.1 Program template

A program in IDL is characterized by calling it in the command line via,

programname, variable1, variable2

It will commence running the code, calling inputs and outputs as defined
in the list of variables following the program name.

15

The most basic IDL program template would be something similar.

PRO programname, variable1, variable2

print, ’HELLO WORLD!’

end

2.5.2 Function template

A function differs from the program form in IDL in the way that it is called.
To invoke a function, one would type,

a = function(input1, input2)

This is accomplished via a return statement within the function code.
A basic template would be given by,

FUNCTION functionname, input1, input2

print, "This is where I would normally do something"

return, result

end

2.5.3 The importance of comments

When writing a program, one is often tempted to just write out code in a
steady stream of inspriation. However, this can be quite dangerous, as the
author has experienced firsthand. Personally. Regretably.

The note of point here is that comments can be inserted as inert blocks of
text into your code, to remind you of exactly what you were thinking upon
writing said code. This is accomplished via the ; character. Consider the
following program.

16

pro test, input, output

;First, I’ll print the input

print, input

;Then, I’ll calculate the mean value of the input array, and output it

output = mean(input)

end

Sometimes seemingly redundant, coming back to look at code that one
has written months before can be quite a taxing task without comments.
Ultimately, the moral of this story is to take the extra bit of time to nicely
comment your code. You (and anyone else using your code) will appreciate
it.

2.6 Program control statements

We’ve learned so far how to allow IDL to store your variables, manipulate
them, and how to encode commands into a script-like file. Ultimately, we
wish the computer to do as much of workload as possible. The following
program control statements allow the computer to behave in a certain way,
depending on commands given by the program author.

2.6.1 IF statement

Think of the IF statement as a logical gate. You provide as input a boolean
statement, which if true will allow the code within the IF statement to be
run. If false, this code will be skipped over entirely. A simple example would
be,

a = 5

if a lt 10 then begin

print, a

endif

17

Notice the statement syntaxx involving thenbegin, and endif. In this
case, the statement was true, and thus the value of a would be printed. The
IF statement can also be appended with the addition of an ELSE statement.
If the first statement is not true, then the else statement code will run. If the
first statement is true, then the else statement code will not run. Consider
the example,

a = 7

if a gt 10 then begin

print, ’a is greater than 10’

endif else begin

print, ’a is less than 10’

endelse

2.6.2 FOR loop

A FOR loop is useful when a chunk of code needs to be repeated under certain
conditions. Usually some counter index is used, and advanced through a set
of values. Consider the following example. Our counter index, i, is iteratively
set through a series of values. The chunk of code within the FOR loop is
then run, each time using the particular value of i as directed. Let’s use the
power of FOR loops to create a sine wave, encoded in an array. Notice the
specific use of syntax.

f = fltarr(100)

for i=0, 99 do begin

f[i] = sin(i)

endfor

plot, f

2.6.3 WHILE loop

Now, suppose that we wished to run a particular chunk of code, but we
weren’t sure of a particular index that would be useful. Suppose we just

18

wished to run our chunk of code as long as a particular condition was met.
Suprise, surpise, a WHILE loop is the perfect solution here. Let’s consider a
quick example. In each iteration of the while loop, let’s generate a random
number. We’ll add that random number to our current number, and create
an array to document this progress. We can continue this process until the
absolutely value of this number passes 10.

num=0

f = 0

while abs(num) lt 10 do begin

num = num + randomn(systemtime_seed)

f = [f,num]

endwhile

Try playing around with this code to modify it a bit. The only way to
truly learn programming is to take code, and to tear it apart.

2.7 Other tricks

Here’s a list of helpful commands that can make programming in IDL a little
bit easier.

2.7.1 Save files

More of a feature than a trick, save files allow one to save data in IDL’s
proprietary format. You can even save multiple variables into the same save
file. Consider the syntax for creating and then restoring a save file.

save, a, b, c, d, filename=’file.sav’

restore, file.sav

2.7.2 Debug mode

Debug mode is useful when in the process of writing a program. Ordinarily,
if your IDL program isn’t working correctly in terms of the form of the

19

output, but is still managing to execute altogether, you have no access to
the variables created and destroyed in the process of the calculation. By
including a simple keyword into your program, one can halt the program
before the end (or anywhere else you wish), and keep variables intact to
study exactly where the problem is occuring.

pro test, input, output, debug=debug

... program goes here ...

if keyword_set(debug) then stop

end

One would then call this program via,

test, input, output, /debug

20

Chapter 3

Getting to know Linux

3.1 The terminal

First, we need to find the terminal itself. If using Macintosh OS, locate the
terminal through opening spotlight (the magnifying glass in the top right
corner of the screen), and type in terminal. After opening terminal, by right
clicking the dock icon you will have the option of retaining it in your dock.

If using Microsoft windows, follow the instructions provided by the physics
IT staff after having installed terminal software. For the curious user with
an ssh account on the physics server, try the program PUTTY to get access
to a linux machine over an ssh tunnel.

Once you have the terminal open in front of you, there it will sit, awaiting
your commands...

3.2 Terminal commands

3.2.1 Listing a directory

Probably the first command that will be of use is the ls, or list command.
With your focus in the terminal window, type the command ls, followed by
the return key to execute the command. It should return a list of files and
directories in your current folder. For more details, try the command ls - lh.
This will execute the same list command, but with the added instructions,

21

noted by the - symbol, to do a full list, l, and to make any values human
readable, h.

Both examples are shown in the figure below. Try it out yourself for
practice!

2.2.2 Changing directory

For this section, follow along with the commands shown in the figure. We begin
by typing into the terminal, pwd. This will display the current directory that
you’re in. From there, we can use the ls command to see what lies in this brave
new directory. I see the folder, mechanics, and decide that I wish to move into
that directory. I then issue the cd command for change directory, followed by
the name of the folder or path that I wish to move into.

Once I’m in this directory, for some reason I decide I no longer wish to be
here. So I decide to move back into the folder above the mechanics folder. So
I issue the command, cd... This will move back into the next level folder.
For example, if I type this command while in the folder, /home/chris/school/
mechanics/, it will move me to the directory, /home/chris/school/. What do
you think would happen if you nested two of these together, cd../..?
Try moving around the directories in your /home/yourname/ folder, and famil-
iarize yourself with visualizing the directory structure.

5

3.2.2 Changing directory

For this section, follow along with the commands shown in the figure. We
begin by typing into the terminal, pwd. This will display the current directory
that you’re in. From there, we can use the ls command to see what lies in this
brave new directory. I see the folder, mechanics, and decide that I wish to
move into that directory. I then issue the cd command for change directory,
followed by the name of the folder or path that I wish to move into.

Once I’m in this directory, for some reason I decide I no longer wish
to be here. So I decide to move back into the folder above the mechanics
folder. So I issue the command, cd .., cd followed by two periods. This will
move back into the next level folder. For example, if I type this command
while in the folder, /home/chris/school/mechanics/, it will move me to the

22

directory, /home/chris/school/. What do you think would happen if you
nested two of these together, cd ../..? Try moving around the directories
in your /home/yourname/ folder, and familiarize yourself with visualizing the
directory structure.

2.2.3 Creating a directory

Now that you can move around through directories, what if you want to create
a new one? To accomplish this, issue the command mkdir nameofdirectory.

2.2.4 Copying, moving, and renaming files

Things should start to move more smoothly now that you’re beginning to be-
come familiar with Linux and UNIX commands. Let’s begin with how to copy
a file. The command is pretty simple enough,

cp originalfile newfilelocation

Keep in mind that one can use file directories along with the copy command,
that is to say that the file you’re copying doesn’t need to be in the same di-
rectory! Let’s say I wish to copy a file from my home directory to my Desktop
directory, /textbfwhile I’m in my documents folder! Sounds complicated, but
here we go,

cp /home/chris/file.txt /home/chris/Desktop/

When making a copy of this file, no one said I had to keep the same name
for it. When specifying the directory to move the file to, you can also specify
the name of the copied file. For instance,

6

3.2.3 Creating a directory

Now that you can move around through directories, what if you want to cre-
ate a new one? To accomplish this, issue the command mkdir nameofdirectory.

3.2.4 Copying, moving, and renaming files

Things should start to move more smoothly now that you’re beginning to
become familiar with Linux and UNIX commands. Let’s begin with how to
copy a file. The command is fairly simple,

cp originalfile newfilelocation

23

Keep in mind that one can use file directories along with the copy com-
mand, that is to say that the file you’re copying doesn’t need to be in the
same directory! Let’s say I wish to copy a file from my home directory to
my Desktop directory, /textbfwhile I’m in my documents folder! Sounds
complicated, but here we go,

cp /home/chris/file.txt /home/chris/Desktop/

When making a copy of this file, no one said I had to keep the same name
for it. When specifying the directory to move the file to, you can also specify
the name of the copied file. For instance,

cp /home/chris/file.txt /home/chris/Desktop/someotherfilename.txt

Now, a helpful linux trick that may come in handy. Recall that the
two dots, .. referred to the directory above the one currently in. A single
dot, ., refers to the current directory. So, just to throw a lot of what we’ve
learned together all at once, consider the following scenario. I’m located in
my documents folder, and I wish to copy a file from my downloads folder
into the documents folder. Rather than a complicated mess of changing
directories and the like, consider the following command. Try to visualize
the directory structure as you read through the command.

cp ../downloads/file.txt .

Pretty sweet, eh? These linux commands seem quite complicated at first
glance, but with practice they become a powerful and time saving tool. Up
until now we’ve considering copying a file, leaving the original file behind.
The syntax for moving a file is quite similar to the copy command. Just swap
out the cp for a mv, and you’re good to go. As an example, say I wish to
move a file from my Desktop to my documents folder.

mv /home/chris/Desktop/file.txt /home/chris/documents/

All the same tricks we learned for the copy command will work here as
well. But, there is another trick up our sleeves. Say we wish to simply rename
a file. We could think of that as just moving the original file to the same
directory, but specifying a new name. It’s just that easy,

mv file.txt newfilename.txt

24

3.2.5 Deleting files and directories

To everything there is a time and a purpose. A text file you wrote long
ago may not have a place in your current research. As such, there should
probably be some sort of garbage maintenance in a Linux system. To remove
a file, simply type,

rm file.txt

The question of the afterlife for a file in a Linux system is quite compli-
cated; best not to ask. Now, this command should work with any file, but
what about a directory. Here, things get a bit trickier. The main di?erence is
that you must ensure the directory is empty of any files and or subdirectories.
Then, issue the command,

rmdir directory

Your training is now complete. The next section deals with advanced
Linux tricks that may be of use in your journey.

3.3 Other terminal tricks

3.3.1 Home directory shortcut

When invoking a directory structure in a command, to quickly reference the
home directory use the character ∼. For instance, it can shorten things as
follows.

cp /home/chris/documents/file .

This now becomes the more wieldy,

cp ~/documents/file .

This may not seem the most useful tool, but after typing your home
directory a few hundred times you’ll wish your pinky finger wandered up to
the tilde key.

25

3.3.2 Tab autocomplete

The terminal isn’t dumb. It has a knowledge of the files and directories
you’re trying to access. And it wants to help you. Say you were trying to
access your documents folder by typing the following.

/home/chris/docu

...But at this point you’re feeling quite impatient with how long it actually
takes to type the word document. Problem? Nope. By hitting the TAB key,
the terminal will attempt to finish your statement for you, and will most likely
type ’ments’ for you. If nothing happens, multiple files or documents could
exist with that same prefix. Two TABs will display a list of all matching files
and documents.

3.3.3 Wildcard tool

How can you find what you’re looking for, if you don’t know what its name
is? The wildcard tool is your answer. Say you have a directory full of files.
Named file0001, file0002, file0003. Instead of typing rm file0001 and all of
the rest, the wildcard symbol will enable the terminal to match anything
matching the input you’ve provided. For instance, to delete the files as
shown, the command issued would be.

rm file*

But... suppose you want to delete all of the image files, but not the text
files in a directory. And just to make things more difficult, the names overlap,
but all begin with the prefix file. No problem with the wildcard, as it can be
inserted into the middle of a statement, even multiple times!

rm file*.jpg

3.3.4 Manual files

If ever in doubt about a command,

man command

26

