Derivation

Jade R. Ream

Motivation: Roger Scott developed a circular model illustrating how a magnetic intrusion in the supra-arcade current sheet affects the plasma flow. The next step in this research is to transform the simple circular intrusion into an elliptical intrusion complicating the flow pattern. To transform a circular intrusion to an elliptical intrusion, we began with the magnetic flux function representative of a circle of unit radius.

Let us declare B as magnetic field, when $B \rightarrow$ constant at $r \gg R$ and $B \cdot \hat{r}=0$ on a circle. We know that when $\boldsymbol{\nabla} \cdot B=\boldsymbol{\nabla} \times B=0 \Rightarrow B \propto \nabla f$. If $z \in \mathbf{C}, z=x+\imath y$ and x represents the real axis.

Thus, the flux function is given by,

$$
\begin{equation*}
f=x\left(1-\frac{1}{r^{2}}\right) \quad \text { such that } \quad \nabla^{2} f=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } B=(\hat{x} \times \hat{y}) \times \nabla f \tag{2}
\end{equation*}
$$

Provided that $\zeta(z)$ is analytic then, $\nabla^{2} f(\zeta(z))=0$.

The traditional formula for a Joukowski Transformation,

$$
\begin{equation*}
J \circ z=A z+B \frac{1}{z} \tag{3}
\end{equation*}
$$

is a conformal mapping therefore, under the conditions (1-3) displayed above,the inverse Joukowski Transform,

$$
\begin{equation*}
\zeta=J^{\prime} \circ z=\frac{1}{2 A}\left(z \pm \sqrt{z^{2}-4 A B}\right) \tag{4}
\end{equation*}
$$

is an analytic function. So it follows that g to represent $f(\zeta(z))$, then

$$
\begin{equation*}
\nabla^{2} g(z)=0 \tag{5}
\end{equation*}
$$

This also allows us to say that

$$
\begin{equation*}
g=f(\zeta) \tag{6}
\end{equation*}
$$

We are ultimately interested in the magnetic field strength,

$$
\begin{equation*}
|B|=|\nabla g|=|\nabla f(\zeta(z))| \tag{7}
\end{equation*}
$$

Since z is an element of the complex number set, we must go back to this definition using real numbers. So let us redefine f as,

$$
\begin{equation*}
f=x\left(1-\frac{1}{x^{2}+y^{2}}\right) \tag{8}
\end{equation*}
$$

Now we will require useful facts that simplify the problem:

At the line $y=0$

$$
\begin{equation*}
\nabla g=\partial_{x} g \tag{9}
\end{equation*}
$$

This implies that on this line

$$
\begin{equation*}
\operatorname{Im}(z)=\operatorname{Im}(\zeta)=0 \tag{10}
\end{equation*}
$$

This allows us to assume

$$
\begin{equation*}
f(x)=x\left(1-\frac{1}{x^{2}}\right) \tag{11}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left(J^{\prime} \circ z\right)=\left(J^{\prime} \circ x\right)=\frac{1}{2 A}\left(x \pm \sqrt{x^{2}-4 A B}\right) \tag{12}
\end{equation*}
$$

This all leads us to the conclusion that,

$$
\begin{equation*}
|B|=\partial_{x}\left[f\left(J^{\prime} \circ x\right)\right] \tag{13}
\end{equation*}
$$

The next goal is to derive $\partial_{x} g(x)$.
Let us begin by allowing ζ to represent $J^{\prime} \circ x$, thus,

$$
\begin{equation*}
\partial_{x} f=\partial_{\zeta} \cdot f \cdot \frac{d \zeta}{d x} \tag{14}
\end{equation*}
$$

After considering the chain rule, we are left with,

$$
\begin{equation*}
\partial_{\zeta} f(\zeta) \cdot \partial_{x}(\zeta(x)) \tag{15}
\end{equation*}
$$

A simple substitution creates the equation,

$$
\begin{equation*}
\partial_{\zeta} f(\zeta)=\partial_{\zeta}\left(\zeta\left(1-\frac{1}{\zeta^{2}}\right)\right) \tag{16}
\end{equation*}
$$

Using the product rule we can rewrite this as,

$$
\begin{equation*}
\left(1-\frac{1}{\zeta^{2}}\right)+\zeta\left(\frac{2}{\zeta^{3}}\right) \tag{17}
\end{equation*}
$$

This is equal to,

$$
\begin{equation*}
\left(1-\frac{1}{\zeta^{2}}\right)+\left(\frac{2}{\zeta^{2}}\right) \tag{18}
\end{equation*}
$$

which reduces to,

$$
\begin{equation*}
1+\frac{1}{\zeta^{2}} \tag{19}
\end{equation*}
$$

Now we will work on the derivation of the second part. The first step is substituting the solution for equation(12) in for ϖ.

$$
\begin{equation*}
\partial_{x}(\zeta(x))=\partial_{x}\left(\frac{x}{2 A} \pm\left(\frac{\sqrt{x^{2}-4 A B}}{2 A}\right)\right) . \tag{20}
\end{equation*}
$$

After pulling out a $\frac{1}{2 A}$, and taking the derivative the right hand side simplifies to,

$$
\begin{equation*}
\frac{1}{2 A}\left(1 \pm\left(\frac{2 x}{2 \sqrt{x^{2}-4 A B}}\right)\right) \tag{21}
\end{equation*}
$$

Finally, the complete equation is,

$$
\begin{equation*}
\partial_{x} g(\zeta(x))=\left(1+\frac{1}{\zeta^{2}}\right)\left(1 \pm\left(\frac{x}{\sqrt{x^{2}-4 A B}}\right)\right) \tag{22}
\end{equation*}
$$

Right now we have an equation in two variables but we know that $x=A \zeta+1 / \zeta$, so lets isolate the equation into terms of zeta.

