

A COMPREHENSIVE STUDY OF THE PHOTOSPHERIC MAGNETIC FIELD CHANGE ASSOCIATED WITH SOLAR FLARES

Shuo Wang¹, Chang Liu¹, Na Deng¹, Rui Liu¹, Yang Liu², Haimin Wang¹ 1. New Jersey Institute of Technology, Newark, NJ, United States. 2. Stanford University, Stanford, CA, United States.

Dissertation Talk

Advisor: Haimin Wang Co-advisor: Chang Liu

Discovery

2

Rapid and permanent enhancement of transverse magnetic fields near the flaring magnetic polarity inversion line associated with flares were discovered two decades ago (Wang 1002) Wang et al. 1004)

1992; Wang et al. 1994).

Similar trend has continued to be observed later on in many observations (Wang et al., 2002, 2004, 2005; Liu et al., 2005; Wang et al., 2007; Jing et al., 2008; Li et al., 2009; Liu et al., 2011), and shows some agreement with recent MHD modeling (Li et al., 2011).

Implosion Model

3

- The coronal magnetic field should contract inward, as the magnetic energy decreases after flares/CMEs (Hudson, 2000).
- So Conservation of momentum.

(Hudson et al. 2008)

Magnetic Field Change Observed by SDO/HMI

6 2011 Feb 15 X2.2 flare

Magnetic Field Change Observed by SDO/HMI

5

Magnetic Field Change Observed by SDO/HMI

Change of Lorentz Force

7

Sudden Acceleration of Spots Rotation

DAVE method (Schuck 2006) applied to obtain surface flow.

Lorentz Force as Driving Force

Lorentz Force as Driving Force

Vorticity & Curl Lorentz Force

The vorticity map is consistent with the twisted flux tube eruption simulation (Fan 2009).

New Jersey's Science &

Technology University

Vorticity & Curl Lorentz Force

The vorticity map is consistent with the twisted flux tube eruption simulation (Fan 2009).

New Jersey's Science &

Technology University

Shear Flow Decrease

Shear Flow Decrease

Sudden Motion & Force

Sudden Motion & Force

More Cases

17

- The horizontal field enhancement at the flaring PIL and rotational field change of nearby spots are common.
- The shear and rotational motions are consistent with the field changes.

Date [yymmdd]	Flare Class		
110213	M6.6		
110215	X2.2		
110906	M5.3		
110906	X2.1		
110907	X1.8		
110925	M7.4		
120307	X1.3		
120307	X5.4		
120309	X1.5		
120510	M5.7		
120712	X1 4		

Statistical Results

18

18 flares with horizontal field enhancement

co-temporal with the flare initiation

co-spatial with the PIL between the two main flare kernels

Statistical Results

19

18 flares with horizontal field enhancement

co-temporal with the flare initiation

co-spatial with the PIL between the two main flare kernels

CME Mass Estimation

20

So Momentum conservation $M_{\rm CME} \simeq \frac{1}{2} \frac{\delta F_r \delta t}{v}$ (Fisher et al., 2012)

GOES 1–8 Å Peak (UT)	NOAA AR	GOES Class	CME Time (UT)	CME Speed (km s ⁻¹)	CME Mass (10 ¹⁵ g)
2011 Feb 13 17:38	11158	M6.6	18:36	373	3.8
2011 Feb 14 17:26	11158	M2.2	18:24	326	2.3
2011 Feb 15 01:56	11158	X2.2	02:24	669	3.3
2011 Sep 06 01:50	11283	M5.3	02:24	782	1.2
2011 Sep 06 22:20	11283	X2.1	23:05	575	2.3
2011 Sep 07 22:38	11283	X1.8	23:05	792	2.6

Notes. Information of the CME time (the first C2 appearance time) and the CME speed are from LASCO CME catalog. The masses were computed assuming $\delta t = 10$ s

Wang et al., 2012, ApJ, 757, L5.

Summary

21

Rapid and permanent horizontal magnetic field change in the photosphere during flares

- Enhancement around flaring magnetic polarity inversion line confirmed with SDO/HMI data
- Accompanied with magnetic field rotational changes in major flares
- Observed down to C4 class flares
- Correlations between the peak GOES X-ray flux and the size of the affected area / integrated field change / Lorentz force change

Sudden motions in the photosphere during flares

- Shear flows along PILs sharply decrease
- Sudden rotation of spots

So Lorentz force change implied by magnetic field change is the driving force of these sudden motions.

- CME mass estimation
- Estimation of shear flow mass/energy, spot mass/inertia/rotational energy