

How reconnection within a current sheet can release energy stored over the global corona—insights from a toy model

Dana Longcope,* MSU

Thanks: Eric Priest, Lucas Tarr

Energy storage – e.g. from emergence

cf. Heyvarts, Priest & Rust 1977

Energy release via reconnection

ΛΦ: flux

Energy release: breaking topological constraint

on P1-N2 flux: access to lower energy state.

Reconnection enables shorter field lines = lower energy

$$\delta W_{\scriptscriptstyle M} \sim \delta \Phi B \Delta L \quad B \Delta L \sim B h \sim I$$

$$B \Delta L \sim B h \sim I$$

Ampère

$$I \sim \frac{\Delta\Phi}{\mathcal{L}}$$

$$\Delta W_M = \int I \, d(\Delta \Phi) = \frac{1}{\mathcal{L}} \int \Delta \Phi \, d(\Delta \Phi) = \frac{1}{2} I_0 \, \Delta \Phi_0$$

current/flux relation

Local flux transfer will release all stored free energy

Where is the energy stored?

 $\Delta W_M = \frac{1}{8\pi} \int \left| \mathbf{B} - \mathbf{B}_0 \right|^2 d^3 x$

Not in current sheet

cf. magnetic field from wire

SPD 2013

Bozeman 7/9/13

B

 \mathbf{B}_{0}

The puzzle so far

- lack of reconnection
 - → equilibrium w/ current sheet (CS)
- reconnection at CS =
 E-field localized to dissipation region in CS
- E-field releases stored magnetic energy does not dissipate/thermalize it
- global field must change in response to decreasing current of sheet (current/flux relation)
- 1) How does local flux x-fer create global change?
- 2) What form does the converted energy take?

Insight from a toy model

(DWL & Priest 2007, DWL & Tarr 2012)

- 1) Assume perturbation is small linear perturbation
- 2) Reconnection via resistivity* `switched on' at t=0
- 3) Solve linearized MHD equations

* Diffuses current, does not reduce it

Azimuthal decomposition of $\delta \mathbf{B}$ about X-point

90% of free energy from m=0 mode — i.e. net current (equiv. wire)

Consider dynamics of m=0 mode only

Linear response to diffusion

FMS rarefaction front: converts W_M to KE

NB: m=0 pert. to J(x,y)

⇔ m=2 pert. To **B** and **v**

Net current carried by FMS front

Current carried upward by FMS front

Reflection plays significant role

The front and its reflection

á la WKB

Not reflected: 85%

Reflected: 15%

Much more reflection at lower frequencies (100% at ω =0)

SPD 2013

Results/Conclusions

- 5% of energy dissipated directly by reconnection E field (i.e. ohmic dissipation)
- 95% converted initially to KINETIC ENERGY energy by FMS wave front
 - 55% reflected repeatedly* dissipated at X-point after time ~ ln(S) τ_A (see Craig & McClymont 1991, Hassam 1992)
 - 40% propagates ever upward as FMW

Toy model suggests 95% of flare energy problem cannot be studied using local (μ-physics) models

*lower ω favored by each reflection – results in more efficient reflection each time (DWL & Tarr 2012)