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Energy storage — e.g. from emergence

FCE: lowest energy without
changing flux P1 N2 (DwL 1996)
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Energy release via reconnection

Energy release: breaking topological constraint
on P1-N2 flux: access to lower energy state.
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Where isthe aAw, - éﬂB -B,| d*x

energy stored?
Not in~current she

cf. magnetic field from wice
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The puzzle so far

* lack of reconnection
= equilibrium w/ current sheet (CS)
* reconnection at CS =
E-field localized to dissipation region in CS
* E-field releases stored magnetic energy
does not dissipate/thermalize it
* global field must change in response to
decreasing current of sheet (current/flux relation)

1) How does local flux x-fer create global change?
2) What form does the converted energy take?

SPD 2013 Bozeman 7/9/13



Insight from a toy model

(DWL & Priest 2007, DWL & Tarr 2012)

B, potential field
turbation ~ 1
& / OB per
B Ideal equilibrium
1) Assume perturbation is small — linear perturbation

2) Reconnection via resistivity* ‘switched on’ at t=0

3) Solve linearized MHD equations _
* Diffuses current,
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Azimuthal decomposition of 0B about X-point

B OB OB (m=>2)

=\

AW, (m=2)=027I" ~10% AW,,

90% of free energy from m=0 mode
— i.e. net current (equiv. wire)

Consider dynamics of m=0 mode only
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Linear response to diffusion

FMS rarefaction front: converts W,, to KE
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Current carried upward by FMS front

SPD 2013 Bozeman 7/9/13



The front

and its

reflection
la WKB
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Results/Conclusions

* 5% of energy dissipated directly
by reconnection E field (i.e. ohmic dissipation)
* 95% converted initially to KINETIC ENERGY
energy by FMS wave front
* 55% reflected repeatedly™® —
dissipated at X-point after time ~ In(S) t,
(see Craig & McClymont 1991, Hassam 1992)
* 40% propagates ever upward as FMW

Toy model suggests 95% of flare energy problem
cannot be studied using local (u-physics) models

*lower w favored by each reflection — results in more efficient
sep201 reflection each time (DWL & Tarr 2012)



