Measurements of Faraday Rotation Through the Solar Corona at 4.6 Solar Radii

Jason E. Kooi, Patrick D. Fischer, Jacob J. Buffo Steven R. Spangler

Montana State University

July 8-11, 2013

THE UNIVERSITY

Why Study the Coronal **B**?

- 1. Great example of a Magnetic Field in an astrophysical plasma
- 2. Techniques used here can be used to study ISM, SNR, etc.
- 3. LOTS of data for this object
- 4. Interesting mysteries to unravel:
 - What mechanism(s) heat the corona?
 - What mechanism(s) accelerate the solar wind?

Measuring the Coronal **B**

Assessing theories requires measurement ...

- Photosphere: Zeeman splitting
- Outer Corona: magnetometer measurements
 - *Helios* approached ~ $62 R_{\odot}$

THE UNIVERSITY OF IOWA

July 10, 2013

2011/08/17 15:36

 χ : polarization position angle χ_0 : intrinsic polarization angle *RM*: rotation measure [rad/m²] λ : wavelength

$$\Delta \chi \equiv \chi - \chi_0 = \left[\left(\frac{e^3}{2\pi m_e^2 c^4} \right) \int_{LOS} n_e \vec{B} \cdot \vec{ds} \right] \lambda^2$$
$$= [RM] \lambda^2$$

Note: symmetry can give $\int n_e \vec{B} \cdot \vec{ds} \approx 0$

July 10, 2013

Measurements of Faraday Rotation at 4.6 Solar Radii

Purpose: To Boldly Go ...

- 1) Measure Faraday Rotation of a background extragalactic radio source through the corona: $\Delta \chi = [RM]\lambda^2$
- 2) Observations made with the VLA @ 5.0 & 6.0 GHz in August, 2011
 - 3) Observations made between $4.6 - 5.0 R_{\odot}$ above the north limb

-THE UNIVERSITY

arcmin

Average T_{sys} vs. Solar Elongation at 4.885 GHz for the VLA [Whiting & Spangler, 2009, EVLA Memo #136, NRAO].

F OWA

Measurements of Faraday Rotation at 4.6 Solar Radii

5

July 10, 2013

Measurements of Faraday Rotation at 4.6 Solar Radii

Radio Galaxy 3C228²

- 2 strongly polarized components 46" apart
- $m_{north} \sim 14\%$ @ 5.0 GHz
- $m_{south} \sim 8\%$ @ 5.0 GHz

5.0 GHz reference observations Contours:

 $-5\sigma_{I}, 5\sigma_{I}, 10\sigma_{I}, 20\sigma_{I}, 40\sigma_{I}, 100\sigma_{I}$ Line orientation gives χ_{0} FWHM is 0.68"

J2000 Declination

6

Slowly Varying RM(t) $\Delta \chi = \chi - \chi_0 = [RM]\lambda^2$

Other Information about **B** . . .

- 1) Subtracting RM(t) time series for two lines of sight from each other $\Delta RM^{i} = RM^{i}_{North} - RM^{i}_{South}$ can provide info/limits on the coronal currents detected by FR. [Spangler, ApJ **670** (2007) 841]
- 2) Subtracting the slowly varying polynomial from RM(t)
 δRMⁱ = RMⁱ RMⁱ_{Fit} can provide info/limits on the fluctuations in the corona (e.g., Alfvén wave amplitudes).
 [Mancuso & Spangler, ApJ 539 (2000) 480]

THE UNIVERSITY

July 10, 2013

Summary

- 1) 5.0 & 6.0 GHz @ $4.6 5.0 R_{\odot}$
- 2) RM for full session & RM(t)
 - Approaching northern solar pole
 - Current Sheet necessary in modeling

This research was supported at the University of Iowa by grants ATM09-56901 from the National Science Foundation.

July 10, 2013

Measurements of Faraday Rotation at 4.6 Solar Radii

Streamer Belt
Neutral Line

$$A$$
 B
 C
 D
 E
 F
 G
 H
 β_U
 β_c
 R_0
 \vdots
 \vdots

3) Consistent with previous work:

$$\vec{B} = \left[B_{dipole} r^{-3} + B_{IPM} r^{-2} \right] \vec{e}_r$$

Further Reading ... Submitted to ApJ

arXiv: 1307.1727