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Helicity and Its Injection Rate

Definition of Helicity

‘Helicity’ of a vector field is the integrated scalar product of the
field and its vector potential

Linking

H:jX-vadv

V
Magnetic Helicity: Introduced by Elsasser(1956) and
Woltjer (1958)

H=[AeBdv

A measure of degreevof linkage, twisted ness, and sheared ness
of the magnetic field.

A IS the vector potential of the magnetic field B
B=VxA

Magnetic Helicity is gauge-dependent quantity
It is conserved in ideal-MHD; approximately
conserved during reconnection.

Twisting

iI\/(Ieag]r;e;(c; helicity is not gauge-invariant for open volume —— Shearing
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Helicity and Its Injection Rate

Relative Helicity Berger and Field (1984) defined a relative magnetic helicity by
subtracting the helicity of a reference potential field B, which has the same B_ distribution

on S.
H. :j(Ai Ap)o(B$ Bp)dV T ()

V
Helicity Injection Rate The time variation of Hy, as derived by Berger & Field (1984)

ddHR zzj(Ap-B)vnds—j(Ap.V)Bnds 3)
t i8S =5 JEenES = i
Advection term Shear term

First term => inflow (or outflow) of helicity through S (advection term) — VMG data (B||
and v_L) needed

Second term => helicity flux by foot point motions parallel to S (shear term) — only LOS
or B|| data adequate

Pariat et al dH
GAzzj(Ap-v)Bnds — =
S

”[(X £ Rud u)]nB(X)B (x)dS'ds

| x—x"



Motivation

Magnetic helicity is the most important observational parameter
which links the surface magnetism with the solar interior on the one
hand, and with interplanetary space on the other.

Magnetic reconnection cannot expedite the decay of helicity but can
only transfer it from one flux system to another.

Impulsive variations of magnetic helicity injection rate associated with
eruptive X- and M- class flares accompanied with CMEs were reported
by Moon (2002).

Recently, Park et al (2010) conjectured that the occurrence of the X3.4
flare on 2006 December 13 was involved with the positive helicity
injection into an existing system of helicity. Similarly Chandra et al

2010, Romano et al 2011

We mainly studied the presence of opposite helicity flux spatially and
temporally in flare and CME associated regions for a possible role of
helicity injection by flux motions to trigger them.



Data and Method

HMI line of sight (LOS) magnetograms
— 12min cadence; 0.5arcsec/pixel
— 45sec cadence; 0.5arcsec/pixel

GOES information, AIA quick look images

The AR at different times is remapped to disk center by correcting by a
factor of cosine of its angular distance.

Then, the time sequence magnetograms are tracked by the technique of
Differential Atfine Velocity Estimator (DAVE; Schuck 2005, 2006) for
retrieving horizontal flux motions.

With these velocity and LOS magnetic field information, we computed the
helicity flux density maps and injection rates and further analyzed their
association with observed eruptive events.



Results: AR 11158

15—Feb—2011 00:00:20.130 . - |

15—Feb—2011 01:10:00.340

AlTA 304

AlIA 171
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Results: AR 11158

Need precise alignment

19—Feb—=2011 QC:C157UT
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See also the E-poster Ballroom, relating rotation of sunspots and twist parameters




Positive Flux(10*Mx)

Results: AR 11158
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AR 11158
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Results: AR 11158
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Results: AR 11166
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Results: AR 11166

AR 11166
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Results: AR 11158

AR 11166
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Discussion: Physical Significance

Appearance of opposite signed helicity into the pre-existing helicity system
What could they be?

They can be due to transient effect of the flare during impulsive period inferring
they are not real.

Suppose the injection of opposite helicity is real. Two physical processes that leads
to this behaviour.

One is the local action of plasma motion on a pre-existing flux system that
introduces injection of opposite helicity. This system can not be stable, and the
helicities of opposite sign transfer along fieldlines until they annihilate each other.

The other possibility is that a new twisted flux system is emerging and colliding
with pre-existing magnetic system of opposite helicity.
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Results: Flare Related Effects

Difficulties in detecting transfer of true helicities?

» Flare Related Mag Field changes (Wang & Liu 2010, Wang et al 2012)
. Magnetic Transients and Line Reversal (Qiu & Gary 2004, Maurya et al 2012)
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Temporal Evolution of Helicity Injection Rate in NOAA 11158 & 11166

Results: Flare Related Effects
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» Evidence for existence of opposite helicity fluxes during the flares
» Should be careful in interpreting the results against flare related effects
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Discussion: Flux Vs Helicity

AR 11158 AR 11166
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Discussion: Dependence on Tracking parameters
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Summary

Flux motions including shear as well as rotational motions are discernible in the
studied ARs, and are important in twisting or shearing the magnetic field lines and
thereby flux interactions.

During 6 day period, 14.16 and 9.5x10%** Mx? helicity had been accumulated by these
motions which are consistent with previous results.

We found Spatial and temporal CorresFondence between flaring sites and variations in
helicity injection during some strong flare/CMEs. Overall, we found good correlation
with flares/CMEs with the absolute variations in helicity flux signal, suggesting role of
helicity injection during flares and CMEs.

Flare effects like line-reversal and underestimation of magnetic measurements are

evident in impulsive phWhe ﬂare%hi e believed to effect the true helicity

signal. a n 0 u

We examine this issue using high temporal resolution LOS images. Flare effects indeed
affect the magnetic fields and further the helicity flux signal. However, One can
consider such helicity flux rate changes as true without these magnetic field changes.

A focused study is needed at a time resolution of 3min to associate flare/CME
occurrence with short term variation of helicity injection.

The physical significance of these variations at the onset of the flares is very necessary
to understand the role of the helicity injection in triggering them.

Estimation of helicity injection rates depends on DAVE parameters used to track the
motion of the fluxes. The accumulated helicity value varies by 10% as estimated by
different choices of DAVE parameters.
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