Modeling Solar Eruptions: Where Do We Stand?

Tibor Török

Predictive Science, Inc.

SPD meeting, 2013, July 8-11, Bozeman

Past...

2000-2003

2003-2004

2004-2007

MSSL (UK)

2007-2010

Meudon (France)

AIP (Germany)

Bernhard Kliem

St.Andrews (UK)

Thomas Neukirch

Lidia van Driel-Gesztelyi

Guillaume Aulanier

...and Present

www.predsci.com

<u>Outline</u>

Introduction

- What are solar eruptions?
- Modeling eruptions (constraints & methods)
- Two (still) open questions:
 - 1. How are eruptions triggered & driven?
 - 2. Are solar eruptions coupled?
- State-of-the-art: global & thermodynamic simulations
- Summary & Outlook

What are solar eruptions?

- Largest energy release events in the solar system: up to several 10²⁵ J (current annual world energy consumption: 5 x 10²⁰ J)
- Occur in the solar atmosphere (corona)
- Three main types: flares, prominence eruptions, and CMEs

(Eruptive) Flares

drawing by R.C. Carrington (first recorded flare 1859)

flare arcade & ribbons

- Sudden, localized increase of emission (mostly EUV & X-ray)
- First observed in the 19th century (in white-light)
- Produce two "ribbons" and "post-flare" arcade

14 July 2000 ("Bastille Day Event")

21 April 2002 (TRACE 195 Å)

13 December 2006 (Hinode/SOT)

Prominence (filament) eruptions

- Dense and cool (10⁴ K) structures suspended in hot (10⁶ K) corona
- Lengths up to several 100,000 km (smaller in active regions)
- Can exist for weeks or even months
- Most prominences/filaments eventually erupt

Coronal Mass Ejections (CMEs)

- Huge expulsions of plasma (and magnetic field) from the corona
- Masses up to $\approx 10^{16}$ g; speeds up to ≈ 3500 km/s
- Can occur several times a day (during maximum solar activity)
- Discovered only in the 1970s

2003 Oct 25 00:00:12

"Halloween Events" (Oct/Nov 2003) observed by SOHO/LASCO coronagraph

Why do we care? ... space weather

courtesy of University of Oslo (forskning.no)

- CMEs can hit the Earth and cause "geomagnetic storms"
- CMEs & flares an destroy satellites, power grids, harm astronauts...
- One main research goal: forecast occurrence and impact of eruptions

Observational constraints: where do eruptions come from?

active region & sunspots (2011, February 15)

EUV corona showing a belt of active regions (SDO/AIA 171 Å)

- Strongest events originate in large active regions (above sunspot groups)
- ... but also in dispersed regions (quiescent prominences)
- Always above (sheared) magnetic polarity inversion lines

eruption on 7 June 2011 observed by SDO/AIA (courtesy of C. Schrijver)

- Flares, PEs & CMEs typically occur together (especially in large events)
- Different observational manifestations of violent disruption of magnetic field?

Further constraints

Table 1. Energy Requirements for a Moderately Large CME		
Parameter		Value
Kinetic energy (CME, prominence, and shock)		10 ³² ergs
Heating and radiation		10 ³² ergs
Work done against gravity		10 ³¹ ergs
Volume involved		$10^{30} \mathrm{cm}^3$
Energy density		100 ergs cm^{-3}
Table 2. Estimates of Coronal Energy Sources		
		Energy Density
Form of Energy	Observed Average Values	ergs cm ⁻³
Kinetic $((m_p n V^2)/2)$	$n = 10^9 \mathrm{cm}^{-3}, V = 1 \mathrm{km}\mathrm{s}^{-1}$	10 ⁻⁵
Thermal (nkT)	$T = 10^{6} \text{K}$	0.1
Gravitational $(m_p ngh)$	$h = 10^5 \mathrm{km}$	0.5
Magnetic $(B^2/8\pi)$	B = 100 G	400

Forbes (2000)

surface magnetic field around X-class flare on 13 Dec. 2006 (Hinode/SOT) magnetic field extrapolation of active region (13 Dec. 2006) Schrijver et al. (2008)

- Eruptions originate in the low corona
 - → plasma environment dominated by magnetic fields
 - eruptions are magnetically driven (non-magnetic models ruled out)
- Slow surface evolution of active regions not significantly affected by eruptions
 - → foot-points of coronal field lines effectively stationary ("line-tied")
- Required ("free") energy stored in current-carrying, sheared/twisted core field
- Core field formed by flows/emergence & stabilized by overlying potential fields

Basic eruption scenario

Initiation phase: stress exceeds threshold \rightarrow opening of closed field \rightarrow CME (+ PE)

Main phase: - huge expansion + formation of vertical current sheet below eruption → re-configuration of coronal field by magnetic reconnection → flare

Solar eruption models (see Forbes 2001)

- Virtually all eruption models formulated as initial boundary-value problems:
 - System of differential equations (single-fluid MHD)
 - Set of boundary conditions (quite well constrained by observations)
 - Initial state (less well constrained)
- Limitations:
 - MHD approximation:

 no kinetic physics (e.g. particle acceleration)
 - Coronal magnetic field not known → initial state more or less ad-hoc

Models still valuable to test proposed physical mechanisms

1. How are eruptions triggered & driven? ...many models...

Tether Cutting: "runaway" reconnection

Magnetic Breakout: unstable arcade, triggered (& driven?) by reconn.

Flux Cancellation at neutral line forms flux rope

Driven Flux Rope: photospheric I injection & hoop force

Flux Rope Catastrophe: end point in equil. sequ. & jump

Flux Rope Instability: ideal MHD instability (kink & torus instab.)

Flux rope instability models

loop-shaped prominence (SOHO/EIT 304 Å)

twist in CME core (SOHO/LASCO)

kinking eruptive prominence (SOHO/EIT 304 Å)

Eruptions often show: – single, loop-shaped structure

- signatures of internal twist
- helical deformation of rising loop
- Suggests flux rope geometry + occurrence of ideal MHD kink instability (occurs if flux rope twist exceeds threshold → helical deformation)

The helical kink instability (KI)

Titov & Démoulin (1999)

Török & Kliem (2005)

2002-May-27 18:02:05

- Simulate KI using analytical coronal flux rope model
- Morphology & rise of kinking filament well reproduced
- Similar model at the same time by Fan & Gibson (HAO)
- However: flux rope does not fully erupt (no CME)

Fan & Gibson (2004)

Torus instability (TI)

• Current ring + external poloidal field:

$$f_{I} = \frac{I^{2}}{4\pi^{2}a^{2}R^{2}}(L + \mu_{0}R/2) \iff$$
"hoop force"

$$f_B = -\frac{I B_{ex}}{\pi a^2}$$
restoring force

Török & Kliem (2007) (line-tied partial current ring)

 TI occurs if restoring force drops faster than hoop force during expansion of the ring after perturbation in R

$$B_{\text{ext}}(R) = B_0 R^{-n} \longrightarrow n_{\text{crit}} \approx 3/2$$

Bateman (1978); van Tend & Kuperus (1978); Kliem & Török (2006)

• On the sun: slowly rising flux rope (filament) has to reach height at which $n > n_{crit}$

That's just part of the story ... role of reconnection?

Moore et al. (2001)

Lynch et al. (2008)

- Within / below core field ("tether cutting):
- <u>slow</u>: arcade-to-rope transition (slow rise phase)
- <u>fast</u>: flare reconnection ruption driver

- Above core field ("breakout"):
- can trigger eruption
- can speed it up significantly

these processes (and TI) work together in eruptions !

(which one dominates depends on the circumstances)

2. Are solar eruptions coupled ("sympathetic") ?

sympathetic eruptions on 25 December 2011 (courtesy of C. Schrijver)

- Near-simultaneous eruptions from different source regions
- Statistical studies indicate that such eruptions are sometimes causally linked
- Various linking mechanisms were suggested (waves, magnetic reconnection, surges, sub-surface connection...), but no model has been developed

The eruptions on 1-2 August 2010

Schrijver & Title (2011)

SDO/AIA 171+193+211 Å Schrijver et al. (2013)

Global event; half a dozen individual eruptions involved

All source regions appear to be magnetically connected

Modeling: subset of three eruptions

- Eruption sequence apparently triggered by eruption of filament 1
- Note: filament further away from 1 erupts first !
- Before eruptions: large filaments 2 and 3 located in pseudo-streamer

Numerical setup

Idealized model: two TD flux ropes in pseudostreamer & two ropes next to it

- Ignore details like field asymmetries & different size of filaments
- β = 0 approximation & ideal MHD equations (reconnection due to num. diffusion)

Simulation results

Török et al. (2011)

- Initiate eruption of flux rope 1 by converging flows (ad-hoc)
- Eruption leads to two consecutive reconnection events, each of which triggers a new eruption

R1: "breakout" reconnection at pseudostreamer separatorR2: "flare" reconnection in the wake of erupting FR 2

Validity of idealized model

Titov et al. (2012)

- Model: suggests how one eruption can trigger subsequent eruptions
 - reproduces correct order of eruptions
- However: difficult to confirm whether this happened in the real event
- Further support from data-based analysis of coronal magnetic topology
- More detailed, data-based simulations are needed

State-of-the-art: global & "thermodynamic" simulations

Tóth et al. (2007)

Mok et al. (2008, 2011)

- Idealized models computationally inexpensive
 study & test basic physical mechanisms
- State-of-the-art models aim for more realism by using:
 - large spherical domains to model extended corona & solar wind
 - observed photospheric magnetic fields as boundary condition
 - improved energy transport: coronal heating, thermal conduction, radiation losses

Thermodynamic modeling of the corona

synoptic (full-Sun) magnetogram

relaxed (partially open) coronal field

- 1. Extrapolate initial magnetic field from synoptic (1 month) photospheric magnetogram
- 2. Run thermodynamic simulation until steady-state (including solar wind) is reached
- 3. Produce synthetic satellite images (allows direct comparison to observations)

Thermodynamic CME simulations

- Energize eruption source region:
 - insert stable or unstable analytical flux rope
 - impose boundary evolution to create flux rope
- Trigger eruption by, e.g., converging flows toward source region neutral line

Comparison with white-light CME observations

- Compare synthetic polarization brightness images to observations
- Result depends strongly on viewing angle
- → Important for estimations of CME mass & kinetic energy

Interplanetary CME propagation

coupled CME simulation from Sun to Earth Lionello et al., submitted

- Thermodynamic simulations are computationally very expensive
- Couple with heliospheric codes that use reduced set of equations
 - model CME propagation to Earth (and beyond)
 - produce synthetic in-situ measurements at 1 AU

Modeling observed eruptions

1-2 August 2010

AIA 211

XRT Ti-poly

β = 0

14 July 2000 (Bastille Day event)

Summary

 Idealized simulations improve our understanding of physical mechanisms at work in solar eruptions — e.g initiation & driving of eruptions and coupling between eruptions

Global simulations using real data & improved coronal plasma descriptions emerging
 deeper insight & semi-realistic modeling of observed eruptions

 Coupling of coronal & heliospheric models will allow us soon to simulate observed events from Sun to Earth

 important for understanding and predicting space weather

- Still, it will be many(?) years before we have models that:
 - resolve the enormous range of length scales present in solar eruptions
 - solve the complete set of plasma equations
 - use boundary & initial conditions that match reality

Outlook (some current & next steps)

- Adaptive mesh refinement
 improve modeling of reconnection, shocks, etc.
- Couple MHD and PIC (kinetic) codes → modeling of particle acceleration
- Couple FE or NLFFF & CME models

 more realistic pre-eruption configurations
- - → simulate CMEs in real time

Many thanks to AAS/SPD

Thank you for your attention