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Overview:  Using numerical models to understand solar 

magnetic fields

Numerical models that incorporate data fall into several 

categories:

� Tracking algorithms and related inversion techniques used 

to determine surface flows

� Magnetostatic models --- Potential field extrapolations, 

constant, and non-constant-α force-free extrapolations, 

steady-state descriptions  

� Dynamic models --- Data inspired, data-driven, or fully 

assimilative MHD 



Overview:  Using numerical models to understand solar 

magnetic fields II

“Stand-alone” numerical models: 

� Local and global MHD models of the deep convective 

interior

� Local radiative-MHD models of surface convection and the 

low atmosphere

� Local and global idealized MHD models of the low 

atmosphere and corona

� Local semi-realistic MHD models of the upper convection 

zone and corona



Data-incorporated numerical models: tracking 

algorithms and velocity inversion techniques

Motivation: A quantitative description of photospheric flows 
based on a time-series of magnetograms helps determine 

� the Poynting flux at the photosphere, and thus the 
magnetic energy introduced into the corona from below

� the magnetic or current helicity across the photosphere

� whether magnetic flux is emerging, submerging, or 
undergoing “cancellation”

� how active region flux disperses, giving better estimates of 
e.g., eddy diffusion coefficients for flux transport models  

� the photospheric boundary conditions for MHD models of 
the solar atmosphere



Tracking algorithms

(Demoulin & Berger 2003)

Tracking algorithms alone (e.g., LCT) directly 

applied to a sequence of magnetograms do not 

produce physical flows without additional 

assumptions and analysis.

� Thus, tracking velocities do not correspond to 

the actual flow field

Furthermore,  flows  are not guaranteed to be 

physical ; the electric field derived from these 

flows is unlikely to be consistent with Faraday’s 

law.

Since this is a necessary prerequisite for 

incorporating sequences of magnetograms into 

dynamic models of the solar atmosphere, we 

must address the question

Given a time series of magnetograms, can we determine an electric field 

consistent with Faraday’s law?



Velocity inversion techniques

Several groups have tackled this problem in the context of ideal MHD, 
and developed a number of techniques to solve this underdetermined 
system for the evolution of the vertical component of the magnetic 
field

� Inductive Local Correlation Tracking, ILCT (Welsch et al. 2003)

� Minimum Energy Fit, MEF (Longcope 2004; Ravindra et al. 2008)

� Differential Affine Velocity Estimator, DAVE (Schuck 2005)

� Minimum Structure Reconstruction Method (Georgoulis & LaBonte 2006).

More recently, there have been an effort to construct velocities or 
electric fields consistent with all three components of the induction 
equation

� Ideal Vector Driving, IVD (Welsch et al. 2008 AGU/SPD)

� Poloidal-Toroidal Decomposition, PTD (Fisher et al. 2008 AGU/SPD)



Static models of the coronal magnetic field

Potential field extrapolations (global and local)

Use data to specify boundary conditions, obtain solution via e.g., 
Fourier/spherical harmonic decomposition, or a Green’s 
function formalism

Advantages:  

Computationally inexpensive, relatively easy to integrate into a
pipeline

Disadvantages:  

Active region magnetic fields are often not well described by a 
potential, current-free field

B = −∇ψ J = 0



Static models of the coronal magnetic field II

Force-free field extrapolations (global and local)

Use data to specify boundary conditions, obtain solution via e.g., 
relaxation techniques, ---- see the tests and comparisons of 
Schrijver et al. (2008)

Advantages:  

Provides an improved representation of active region magnetic 
fields over potential extrapolations

Disadvantages:  

A non-constant α force-free extrapolation is a challenging 
mathematical problem (ill-posed), and for large datasets can be 
computationally expensive 

J × B = 0 J = 4παB



Static models of the coronal magnetic field II

Force-free field extrapolations (global and local)

Use data to specify boundary conditions, obtain solution via e.g., 
relaxation techniques, ---- see the tests and comparisons of 
Schrijver et al. (2008)

Advantages:  

Provides an improved representation of active region magnetic 
fields over potential extrapolations

Disadvantages:  

A non-constant α force-free extrapolation is a challenging 
mathematical problem (ill-posed), and for large datasets can be 
computationally expensive 

J × B = 0 J = 4παB
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Examples of different classes of MHD models

The anelastic approximation:  appropriate for low acoustic Mach number 

plasmas where the Alfven speed is much less than the local sound speed -

-- valid in the high-β solar interior.

Advantage: efficient  

Disadvantage: approximation breaks down near the surface

Implementation: spectral, finite difference

Fan (2007)



Examples of different classes of MHD models

Fully compressible, realistic radiative-MHD:  

appropriate for the turbulent surface layers 

and low-atmosphere.  The LTE radiative 

transfer equation is solved as a part of an 

MHD system that is closed with a non-ideal 

equation of state.

Advantage: can compare directly with observational data 

Disadvantage: computationally expensive, spatially restricted

Implementation: finite difference

Stein (2008) Stein (2008)



Examples of different classes of MHD models

MHD models of the corona:  different levels of idealization, ranging from 

adiabatic, polytropic, ideal, to semi-realistic.

Advantage: efficient, semi-realistic models can incorporate and be compared with data 

Disadvantage: thermodynamics not well described in more idealized models 

Implementation: shock capture; e.g., upwind differencing, approximate Riemann solvers, FCT

SAIC global model corona Roussev et al. (2007)



Examples of different classes of MHD models

MHD models of the upper convection zone to corona system:  different 

levels of sophistication ranging from realistic (RT equation solved) to 

semi-realistic (optically thick RT approximated)

Advantage: can directly incorporate photospheric data into a model atmosphere 

Disadvantage: realistic models computationally expensive, combined models are research 

codes that would be difficult to envision as a pipeline product 

Implementation: finite difference, hybrid CWENO / JFNK

Martinez-Sykora et al. (2008)

Abbett (2007) log(B)

Abbett (2007)
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RADMHD (Abbett 2007):  Numerical techniques

� We use a semi-implicit, operator-split method.

� Explicit subExplicit sub--step:step: We use a 3D extension of the semi-discrete method of Kurganov & 

Levy (2000) with the third order-accurate central weighted essentially non-oscillatory 

(CWENO) polynomial reconstruction of Levy et al. (2000).

� CWENO interpolation provides an efficient, accurate, simple shock capture scheme 

that allows us to resolve shocks in the transition region and corona without refining the 

mesh.   The solenoidal constraint on B is enforced implicitly.
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RADMHD:  Numerical techniques

� We use a semi-implicit, operator-split method

� Implicit subImplicit sub--step:step: We use a “Jacobian-free” Newton-Krylov (JFNK) solver (see 

Knoll & Keyes 2003).  The Krylov sub-step employs the generalized minimum residual 

(GMRES) technique.

� JFNK provides a memory-efficient means of implicitly solving a non-linear system, 

and frees us from the restrictive CFL stability conditions imposed by e.g., the electron 

thermal conductivity and radiative cooling. 



Flux submergence in the quiet Sun and the connectivity between an initially vertical 

coronal field and the turbulent convection zone

Abbett (2007)



Progress toward data driving:

Remaining challenges:

� Numerical models of the corona can now extend into the photosphere   

where vector magnetic fields are measured.

� It may now be possible to routinely derive a photospheric flow field 

from a time series of vector magnetograms that will provide the 

forces necessary to drive an MHD model atmosphere in a manner fully 

consistent with the observed evolution of the vector magnetic field.

� Determine the most physically-consistent means to dynamically 
couple the kinematic model photosphere to the MHD model 
atmosphere.

� Apply these methods to simulated datasets, and compare the 
atmospheric evolution (a crucial “hare and hound” exercise)

� Determine a means to disambiguate the magnetogram data in such a
way that ensures consistency between subsequent magnetograms.



Above: The magnetic structure of 
the RADMHD model atmosphere

Right: The ANMHD sub-surface 
omega loop (Run SS3 from 
Abbett et al. 2000) used to 
emerge magnetic flux into the 
model atmosphere from below.



What would an “Assimilative Model’’ of the solar 

atmosphere consist of? 

A time-evolving physical model of the Sun’s atmosphere, or a 

portion of the Sun’s atmosphere, which can be corrected by 

time-dependent measurements that can be related in some 

manner  to properties of the solar atmosphere. 

In particular, this means a 3D-MHD model of an active region, 

from photosphere to corona,  that is updated by means of 

vector magnetograms.



What are the most important elements of a physics-

based  model of the Sun? 

� Nearly all transient phenomena, such as solar-initiated “space 
weather” events, are driven by, or strongly affected by, magnetic 
fields.

� A fluid treatment (MHD) is reasonable most of the time (except, 
probably, during solar flares).

� Magnetic fields thread all layers of the Sun’s convection zone and 
atmosphere.

� Maps of the estimated solar magnetic field (line-of-sight 
component) can be performed regularly in the photosphere.

� In the near future, maps of all 3 components of the estimated 
magnetic field (vector magnetograms) will be taken regularly.

� Vector magnetograms are essential for determining the free energy 
available in the solar atmosphere to drive violent phenomena.  
Without vector magnetograms, solar models are not meaningfully 
constrained.



Needed ingredients for an assimilative model of the solar 

atmosphere:

1. A reasonably good physical model

2. Measurements with a good enough time cadence and 
accuracy  to be useful

3. A well-understood connection between physical and 
measured variables

4. A good understanding of the data and model errors

Where do we stand with respect to these requirements?

Good progress!

Rapidly improving!

Reasonably good

Data errors - reasonably good;  Model errors – unknown! 



Formal data assimilation: the Kalman filter

� M - State Transition Matrix

� P  - Model Error Covariance

� y  - Data Vector

� R - Data Error Covariance

� X - Model State Vector

� η - Transition Model Error

� Q - Transition Model Error Covariance

� H  - Measurement Matrix

� ε - Observation Error

� K  - Kalman Gain

Formalism is appropriate for linear systems; covariance matrices can 

be prohibitively large.  For complex non-linear systems, an “ensemble”

Kalman filter is likely required.



RADMHD + data assimilation?

� Collaboration with NSO GONG team members F. Hill, R. 

Komm, I. González-Hernández to incorporate GONG 

magnetograms and/or subsurface velocity maps into 

RADMHD

� Data assimilation tutorial by Utah State GAIM group

� Use ensemble Kalman filter 

� However, computational cost to run many instances of 

RADMHD prohibitive

� Start simple!



Simpler model: flux transport

� Passive scalar transport of radial magnetic field (global)

� Parameterized global flows and turbulent diffusivity

� Differential rotation

� Meridional circulation

� Planned tests

� Fix flows, assimilate magnetic field --- use model to improve 
poor polar data, use data to improve model flux emergence 

� Take magnetic field data as “error-free” --- vary flow 
parameters, tune meridional flow for solar cycle variations?

� Quantify data and model errors

� How to handle large data gaps?  Can we incorporate far-side 
images?
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Summary

� Solar data assimilation models are in their infancy.  

� But we have reached a point where models and data overlap 

on spatial and temporal scales , so assimilative techniques are 

worth detailed investigation

� Vector magnetograms are the best data option, but 

subsurface flow maps may also be viable

� Full MHD models are still computationally expensive, but 

simpler models may be more amenable to data assimilation.  

Data driving be the best approach for more complex models


