

Reconstruction of TSI from Broad Band Facular Contrast Measurements by the Solar Bolometric Image

Pietro N. Bernasconi

JHU/Applied Physics Laboratory, pietro.bernasconi@jhuapl.edu

Peter V. Foukal

Heliophysics Inc., pvfoukal@comcast.net

Introduction

- Variations in TSI correlate well with changes in projected area of photospheric magnetic structures:
 - Dark spots decrease TSI
 - Bright faculae in AR & network increase TSI
- Modeling of TSI based solely on contribution from <u>identified</u> photospheric magnetic sources reports very high correlation coefficients: r > 0.9
- ⇒ TSI variability arises from brightness structures associated spatially & temporally with magnetic structures (flux tubes)

APL Are all TSI contributions accounted for ?

- Correlation analysis alone can not discriminate between:
 - TSI variation from changes of projected areas of spots & faculae
 - TSI variation contribution from brightness structures immediately surrounding flux tubes
- All past and current TSI models rely, in one way or another, on fitting the facular contrast to match as closely as possible the measured TSI variation
- Possible extra-flux-tube structures could be:
 - Bright rings around sunspots (Fowler et al., 1983; Rast et al., 1999)
 - Low-level brightness around ARs associated with predicted "convective stirring" (Parker, 1995)
- Extra-flux-tube contributions would be important on solar-rotational to multidecadal time scales
- Evidence of appreciable convective stirring could reopen the possibility of slower TSI variations large enough to drive climate on centennial to millennial time scales
- TSI modeling based on <u>actual measurements</u> of the bolometric contrast of spots & faculae can determine if other sources of TSI variability have been overlooked

Solar Bolometric Imager

- Recently, the Solar Bolometric Imager (SBI) imaged the photosphere in broad band from the stratosphere (~35 Km altitude)
 - Novel 30 cm aperture telescope with an 320×240 element BST thermal detector
 - 3 arcsec pixels
 - Spectrally constant response between 0.30 – 2.6 μm (i.e. including ~ 94% of TSI) (ref. 1).
- Sept 1, 2003 SBI balloon flight
 - Provided the first broad band measurement of facular contrast (ref. 2).
- Sept 13, 2007 second SBI balloon flight at Sun minimum.
 - Will provide first precise measurements of network bolometric brightness
- 1. Bernasconi *et al.*, Advances in Space Research 33, 1746, 2004.
- 2. Foukal et al., ApJ. Letts. 611, 57, 2004.

APL

September 1, 2003

APL **Measured Facular Bolometric Contrast**

(Foukal et al. 2004, ApJ. 611, L57)

TSI Model

- 1) Determine areas and locations of faculae and sunspots umbrae and penumbrae from SFO Ca II K and Red images
- 2) Compute contribution to TSI variation from Faculae, Umbrae, Penumbrae:

$$\partial S_{Xi}/S = A \left[C_X(\mu) - 1 \right] L(\mu)$$

A = Fractional proj. area of feature $C_X(\mu) = \text{Photometric contrast of:}$ $Umbra: \quad C_U(\mu) = 1.76$ $\text{Penumbra:} \quad C_U(\mu) = 1.23$ $\text{Facula:} \quad C_F(\mu)$ $L(\mu) = \text{Limb darkening (from SBI bolometric measurements)}$

3) Sum all contributions to obtain daily TSI variation

Photometric thresholds for:Umbra: $I_U < 0.68$ RedPenumbra: $0.68 < I_P < 0.91$ RedFacula: $I_F > 1.05$ Ca II K

Facular Contrast

Use 4 different center-to-limb facular contrasts curves

SBI:

- Broad-band (300nm–2600 nm) contrast <u>measurements</u>
- Foukal et al. 2004, ApJ 611, L57
- Lean (1998) best fit #A:
 - Best fit for reconstruction of measured TSI.
 - Lean et al. 1998, ApJ 492, 390
- Lawrence (1988) R & G:
 - Monochromatic (0.15 nm BP) photometric measurements in:
 - Red (524.5 nm)
 - Green (626.4 nm)
 - Lawrence 1988, Sol.Ph. 116, 17

Reconstructions

SBI reconstruction

SVECSE 2008

APL

Scatter Plots

SVECSE 2008

11

Results & Conclusions

- Reconstruction with SBI data is <u>first</u> to use actual <u>measured</u> <u>broadband facular contrasts</u>
 - Agrees to about 10% with TSI record
- High facular contrast is needed at μ > 0.4 to agree with radiometry
- Shape of facular contrast curve at $\mu > 0.4$ has great impact
- Consistently positive residuals (TSI_{PMOD} TSI_{model})
 - May indicate possible presence of extra-flux-tube TSI contributions from bright structures not included in reconstruction
- Details in Foukal & Bernasconi, 2008, Sol. Phys. 248, 1
- To conclusively determine whether the positive residuals we see are really caused by extra-flux-tube bright structures, imaging of areas and contrasts of spots, faculae, and network with SBI over at least several months will be necessary.

Solar Climate Explorer

- SMEX class mission
- Suite of 2 instruments
 - Solar Bolometric Imager
 - Total Irradiance Monitor
- Baseline mission duration: 2 years
- Targeted mission lifetime: 6 years
- Objectives:
 - Understand the physical mechanisms responsible for TSI variation
 - Advance understanding of convection, meridional flow, and dynamo activity in the Sun and Sun-like stars
 - Accurately reconstruct and predict TSI variation from decadal to millennial timescales to improve our knowledge of TSI forcing on Earth's climate

APL September 13, 2007 SBI images

APL SBI Limb Darkening Removed

APL SBI Limb Darkening Removed

MDI LOS magnetogram

APL Bolometric contrast of network

SBI 1 hour average

MDI LOS

MDI 30 mins before

MDI LOS

