Science Mission Directorate

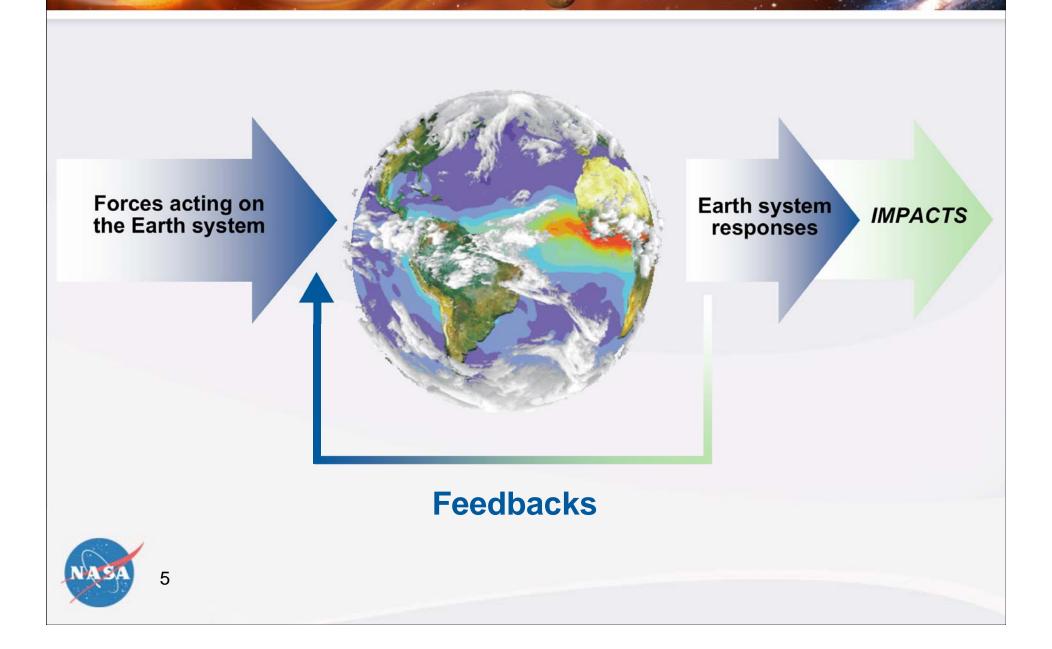
Climate-Related Research Carried Out Under NASA's Earth Science Research Program Solar Variability, Earth's Climate and Space Environment Workshop June 6, 2008 Jack A. Kaye, Ph.D. Associate Director for Research Earth Science Division

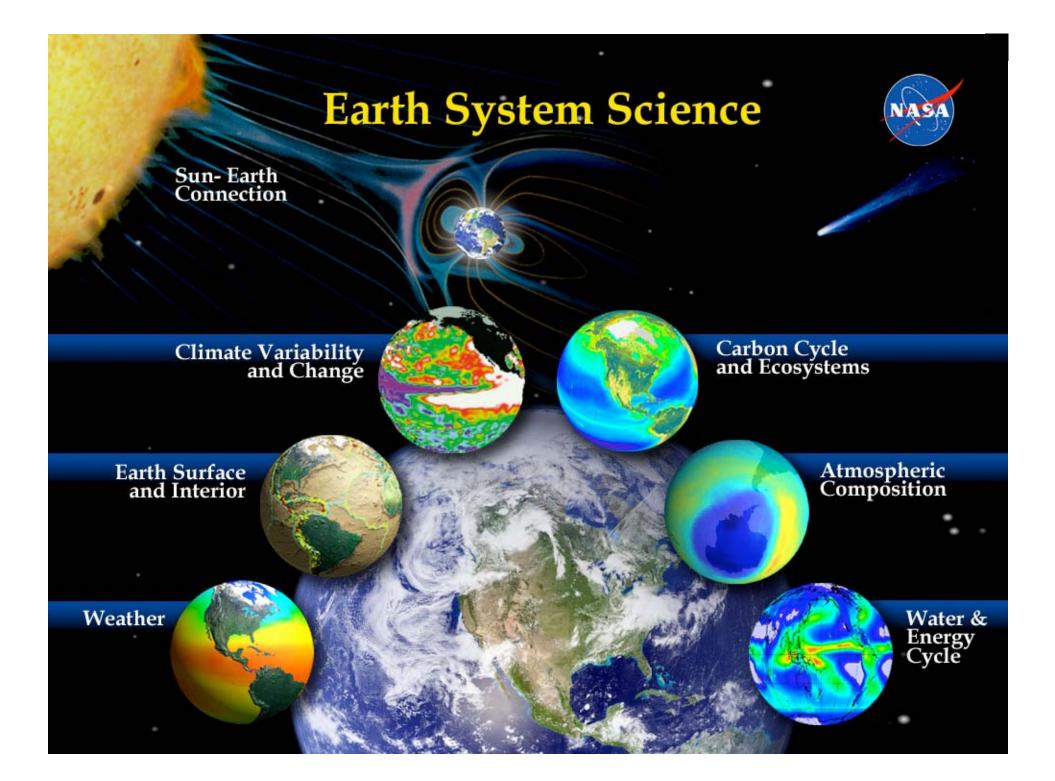
Overview of Talk

- Climate Variability and Change Research within Earth Science Program
- Recent Results
- NRC Decadal Survey and ESD Actions
- Summary

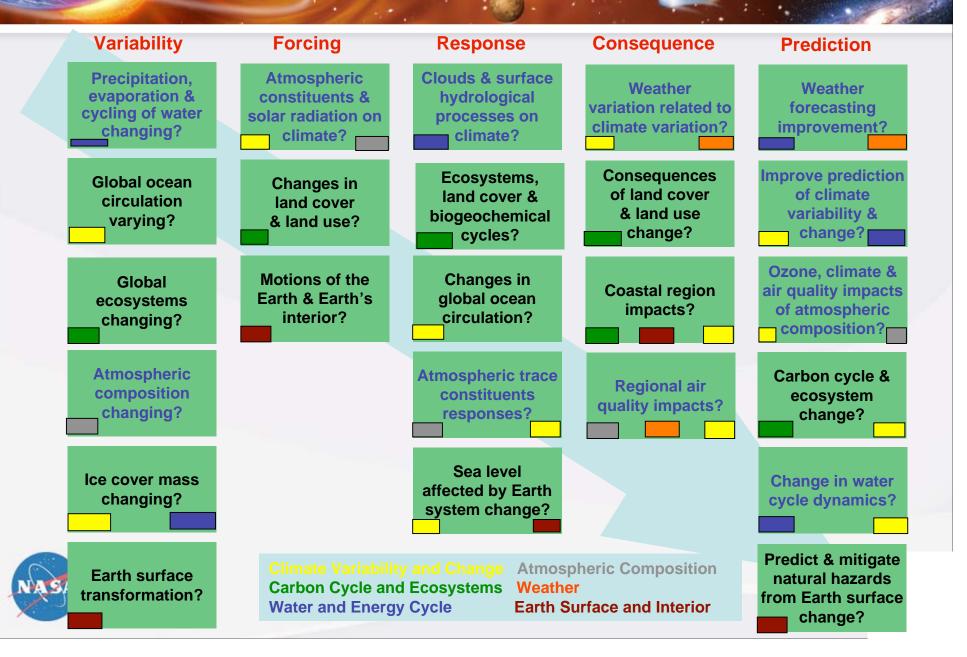
NASA's Science Goals

- Study Earth from space to advance scientific understanding and meet societal needs. (Earth Science)
- Understand the Sun and its effects on Earth and the solar system. (Heliophysics)
- Advance scientific knowledge of the origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as humans explore space. (Planetary Science)
- Discover the origin, structure, evolution, and destiny of the universe, and search for Earth-like planets. (Astrophysics)



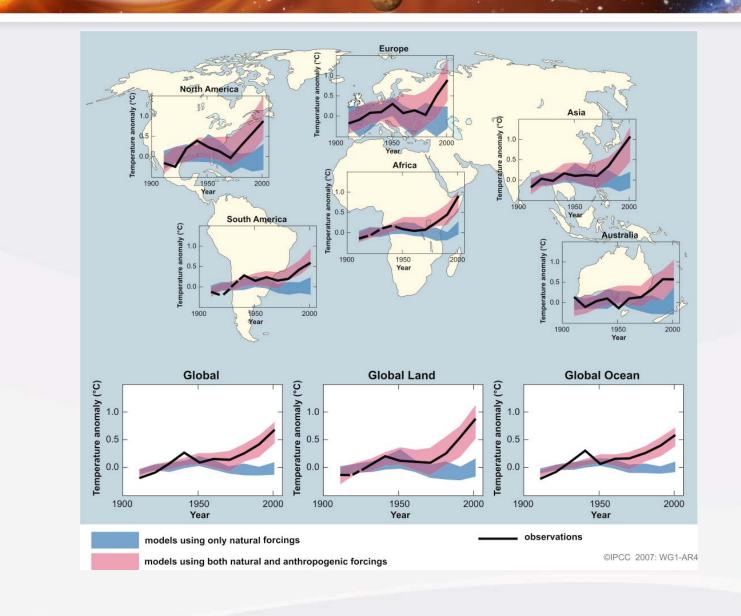

ESD Broader Governmental Context

- NASA Earth Science Supports Multiple Presidential Initiatives
 - Climate Change Science Program
 - Earth Observations
 - Ocean Action Plan
- Congressional Direction Addresses Several Aspects, most notably linkage between NASA and NOAA, but also other areas (ozone, land cover)
- NASA is part of NPOESS program, in particular through the NPOESS Preparatory Project (NPP) mission
- NASA supports several other CENR activities (Air Quality, Water Availability and Quality, Disaster Reduction, ...)

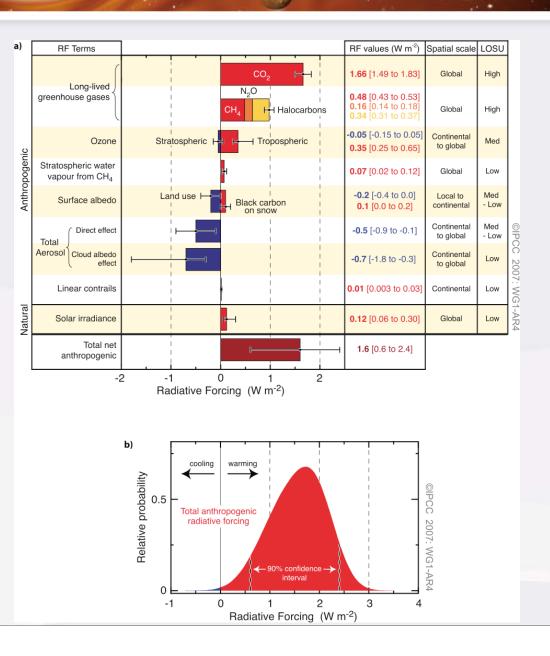


Earth as a Dynamic System

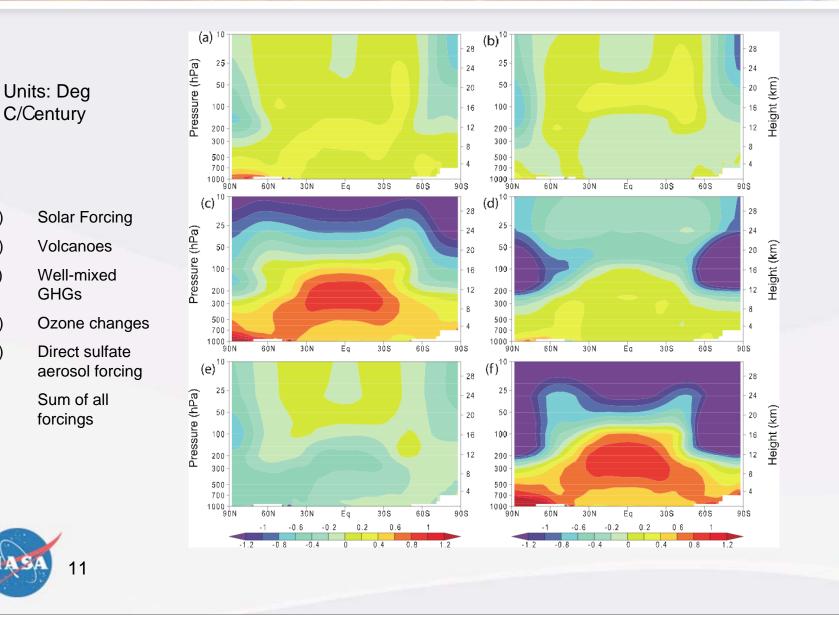
Science Questions and Focus Areas


Recent Activity Affecting Climate Research in US

- NPOESS loses significant number of climate measurements for NPOESS, with some subsequently restored
- NRC releases first-ever Decadal Survey for Earth Science
- •IPCC Report Released in 2007 stronger statements about human contribution to climate change
- Particularly significant results involving polar regions
- CCSP releases increasing number of Synthesis and Assessment Products, including two court-ordered
- documents (5/29/08)



IPCC Modeling Results



IPCC Radiative Forcing

IPCC 2-Zonal Means of T change - 1890-1999 (model)

a)

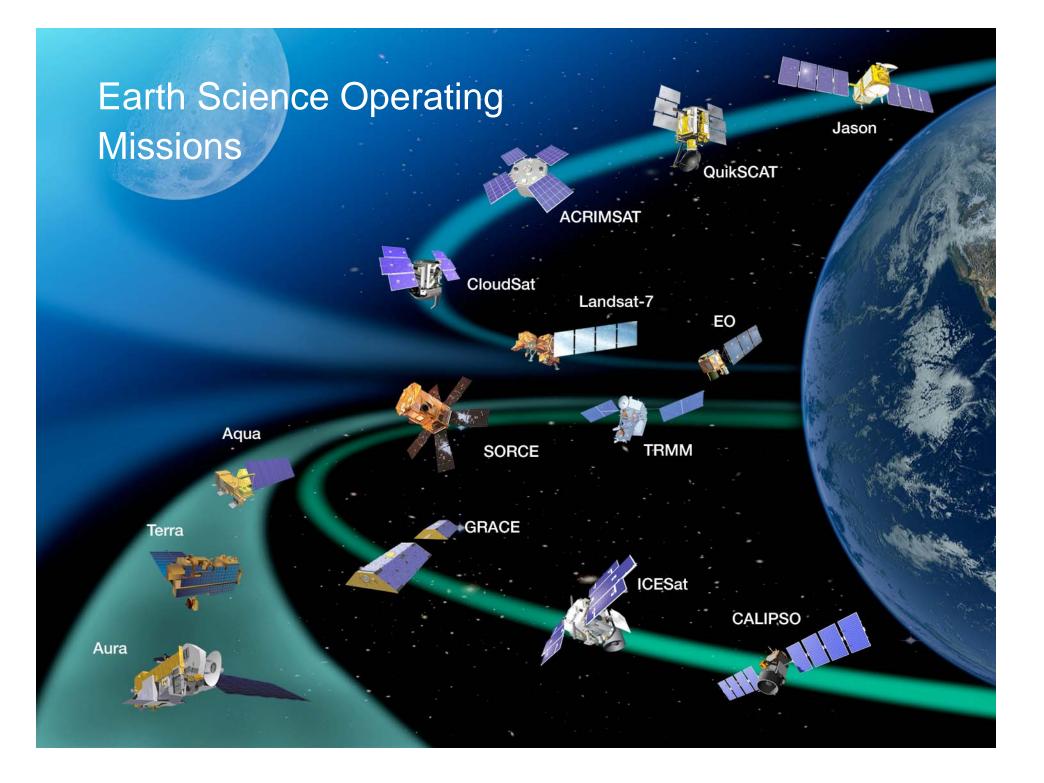
b)

C)

d)

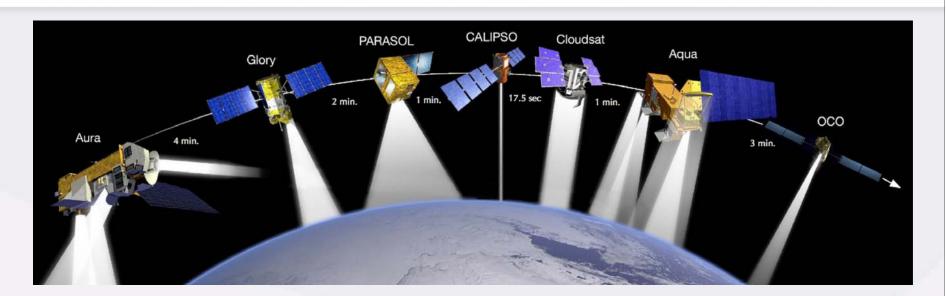
e)

f)


CCSP Synthesis and Assessment Products

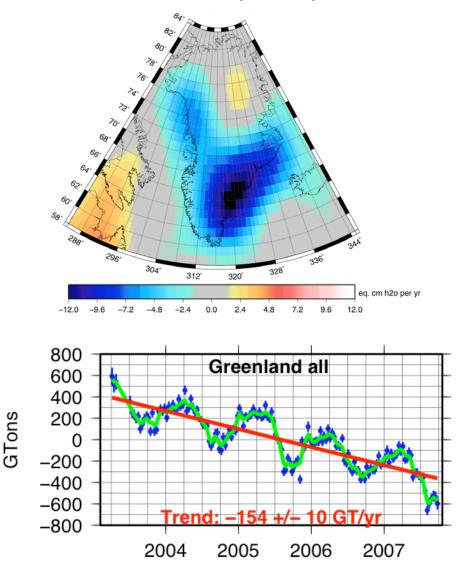
- 1.1 Temperature trends in lower atmosphere (NOAA)
- 1.2 Past climate variability at high latitudes (USGS)
- 1.3 Reanalysis of historical climate data... (NOAA) [ends 29 May '08]
- 2.1 Updating scenarios of greenhouse gas emissions (DOE)
- 2.2 North American Carbon budget (NOAA)
- 2.3 Aerosol properties and their impacts on climate (NASA)
- 2.4 Trends in emissions of ozonedepleting substances (NOAA)
- 3.1 Climate models, sensitivity, uncertainty (DOE)
- 3.2 Climate projections (NOAA)
- 3.3 Climate extremes (NOAA)
- 3.4 Abrupt changes (USGS) [ends 16 June '08]

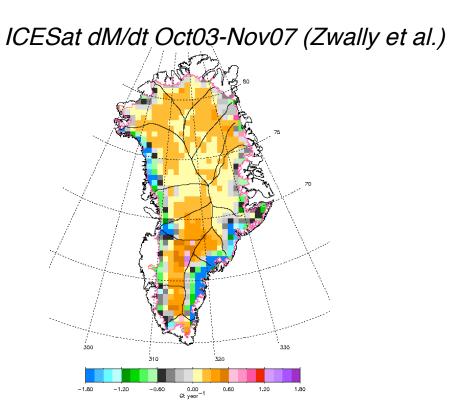
- 4.1 Coastal elevation and sensitivity to sealevel rise (EPA)
- 4.2 Thresholds of change for ecosystems and climate sensitive resources (USGS)
- 4.3 Relationship between ecosystems and climate change (USDA)
- 4.4 Review of adaptation options for ecosystems (EPA)
- 4.5 Effects of Climate Change on Energy Production and Use (DOE)
- 4.6 Impacts of climate variability (EPA)
- 4.7 Transportation sector / climate change linkages (DOT)
- 5.1 Uses and limitations of observations... in decision support systems (NASA)
- 5.2 Best practices approaches for uncertainty in decisionmaking (NOAA) [ends 9 June '08]
- 5.3 Decision support using seasonal-tointerannual forecasts (NOAA)



12. Completed • Public Review • Under Development • Clearance Due or Upcoming

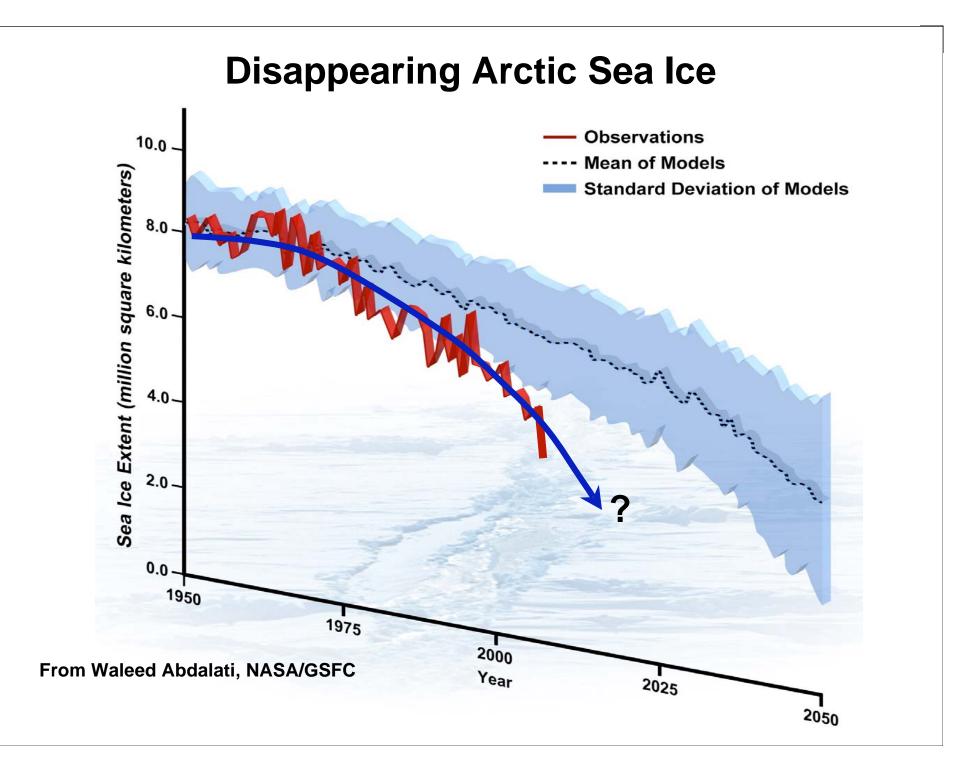
The "A-Train"


Moving Toward the Future of Integrated Earth Observation

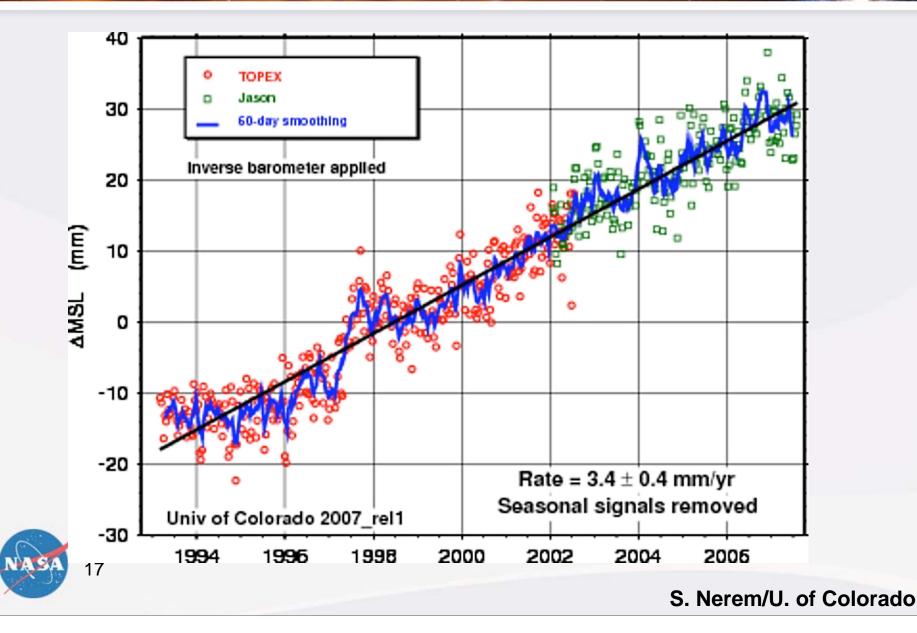


Greenland Mass Change from GRACE and ICESat

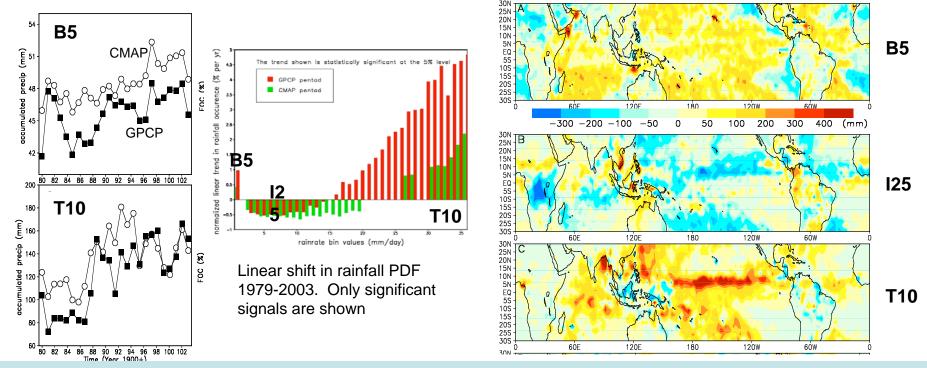
GRACE dM/dt Apr03-Apr07



ICESat Trend: Oct03-Nov07: -137 Gt/yr


GRACE mascon Trend: Sep03-Oct07: -161±10 Gt/yr

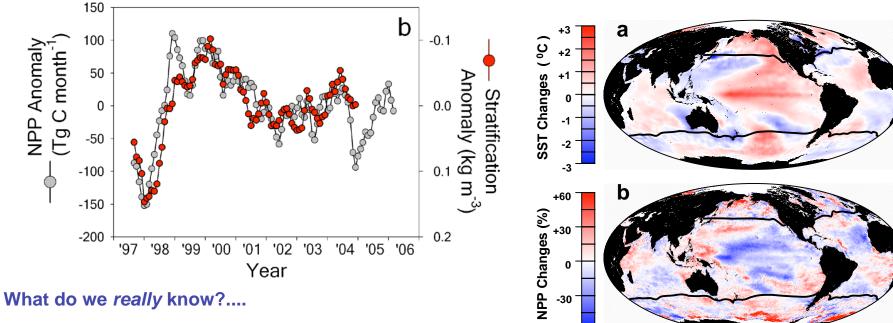
S.B. Luthcke et al., NASA GSFC, (code 698). EGU, Vienna, Austria April 14-18, 2008, EGU2008-A-04338



Global mean sea level variations from

TOPEX/Poseidon and Jason altimeter measurements

Satellite rainfall data show long-term trend in rainfall characteristics


NASA study finds long-term shift in "probability distribution function" (PDF) in satellite-derived rainfall data showing a) an increasing trend in light rain (B5), b) a decreasing trend in moderate rain (I25) and c) an increasing trend in heavy rain (T10). Increase trends in B5 and T10 are shown as time series in left panels. Shift in PDF is shown in middle panel. Right panels show that a) light rain is increased almost uniformly over the ocean, except over continent and coastal regions, b) moderate rain is reduced over ITCZ and adjacent regions, and c) heavy rain is increased over the core of the ITCZ. B5, I25, and T10 have been identified as primarily contributed by warm rain (liquid phase), mixed-phase rain, and cold (ice-phase) rain respectively.

Ref: Lau and Kim, 2006 "Detecting trends in tropical rainfall characteristics, 1979-2003" International. J. Climatology.

Climate-driven trends in contemporary ocean productivity

Michael J. Behrenfeld¹, Robert T. O'Malley¹, David A. Siegel³, Charles R. McClain⁴, Jorge L. Sarmiento⁵, Gene C. Feldman⁴, Allen J. Milligan¹, Paul G. Falkowski⁶, Ricardo M. Letelier² & Emmanuel S. Boss⁷

-60

NPP

APP

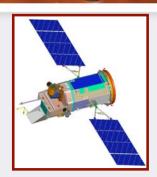
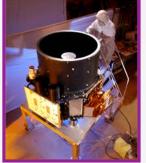

- Satellites measure neither NPP or chlorophyll, they tell us about optics
- SeaWiFS has recorded changes in ocean optical properties over vast regions
- These changes are clearly linked to effects of climate variability on upper ocean temperature and stratification not instrument or atmospheric artifacts alternative explanations: Nutrient-driven changes in NPP;

Photo-oxidation of CDOM; Light-driven changes in photoacclimation

Missions in Formulation and Implementation

OSTM 6/2008


GLORY 6/2009

AQUARIUS 5/2010

NPP 6/2010

2015

000

1/2009

SMAP 2012

GPM 6/2013, 11/2014

LDCM 7/2011

Decadal Survey Recommendations

- Overarching Recommendation
 - The U.S. government, working in concert with the private sector, academe, the public, and its international partners, should renew its investment in Earth observing systems and restore its leadership in Earth science and applications.
- NOAA and NASA should undertake a <u>set</u> of 17 recommended missions, phased over the next decade
- NOAA research to operations
 - Vector ocean winds
 - GPS radio occultation temperature, water vapor and electron density profiles
 - Total solar irradiance/and Earth Radiation (NPP) and restored to NPOESS
- NASA
 - 15 missions in small, medium and large categories
 - Also need to invest in R&A, applied sciences, technology, ground networks, airborne science (including UASs)

NASA Near-Term Missions (4/15 total)

Decadal Survey Mission	Mission Description	Orbit	Instruments
CLARREO (NASA portion)	Solar and Earth radiation: spectrally resolved forcing and response of the climate system	LEO, Precessing	Absolute, spectrally- resolved interferometer
SMAP	Soil moisture and freeze/thaw for weather and water cycle processes	LEO, SSO	L-band radar L-band radiometer
ICESat-II	Ice sheet height changes for climate change diagnosis	LEO, Non- SSO	Laser altimeter
DESDynl	Surface and ice sheet deformation for understanding natural hazards and climate; vegetation structure for ecosystem health	LEO, SSO	L-band InSAR Laser altimeter

CLARREO Impacts on Climate Science

- Improve assessment of climate predictions for public policy
 - CLARREO will measure solar reflected and infrared emitted high spectral resolution benchmark radiance climate data records that can be used to test climate model predictions, improve climate change fingerprinting, and attribution
- Provide climate-accuracy calibration for operational sensors
 - An orbiting calibration observatory that can be used to calibrate other solar and infrared space-borne sensors and thereby improve climate accuracy of a wide range of sensor measurements across the Earth observing system
- Dramatically reduce the effects of data gaps
 - The absolute accuracy of CLARREO, when used to calibrate other sensors in orbit can dramatically reduce the impact of data gaps on decadal change data records across many climate variables
- Provide the first space-based measurements of the Earth's far infrared spectrum
 - Opens a new window to 50% of Earth's IR spectrum with key information on water vapor feedback, cirrus radiative forcing, and the natural greenhouse effect

NASA Mid-Term Missions (5/15 total)

Decadal Survey Mission	Mission Description	Orbit	Instruments
HyspIRI	Land surface composition for agriculture and mineral characterization; vegetation types for ecosystem health	LEO, SSO	Hyperspectral spectrometer
ASCENDS	Day/night, all-latitude, all-season CO ₂ column integrals for climate emissions	LEO, SSO	Multifrequency laser
SWOT	Ocean, lake, and river water levels for ocean and inland water dynamics	LEO, SSO	Ka-band wide swath radar C-band radar
GEO-CAPE	Atmospheric gas columns for air quality forecasts; ocean color for coastal ecosystem health and climate emissions	GEO	High and low spatial resolution hyperspectral imagers
ACE	Aerosol and cloud profiles for climate and water cycle; ocean color for open ocean biogeochemistry	LEO, SSO	Backscatter lidar Multiangle polarimeter Doppler radar

24

NASA Far-Term Missions (6/15 total)

Decadal Survey Mission	Mission Description	Orbit	Instruments	
LIST	Land surface topography for landslide hazards and water runoff	LEO, SSO	Laser altimeter	
PATH	High frequency, all-weather temperature and humidity soundings for weather forecasting and SST*	GEO	MW array spectrometer	
GRACE-II	High temporal resolution gravity fields for tracking large-scale water movement	LEO, SSO	Microwave or laser ranging system	
SCLP	Snow accumulation for fresh water availability	LEO, SSO	Ku and X-band radars K and Ka-band radiometers	
GACM	Ozone and related gases for intercontinental air quality and stratospheric ozone layer prediction	LEO, SSO	UV spectrometer IR spectrometer Microwave limb sounder	
3D-Winds (Demo)	Tropospheric winds for weather forecasting and pollution transport	LEO, SSO	Doppler lidar	

*Cloud-independent, high temporal resolution, lower accuracy SST to complement, not replace, global Nasoperational high-accuracy SST measurement

Decadal Survey Ongoing Activities

- Completed "building block" calibrations of NRC missions
 - Ensure consistent, rational basis for costs
 - Full (LCC) mission cost (including NASA science teams/analyses, mission extension)
 - 2 additional independent cost-estimation efforts (Aerospace, LaRC IPAO)
- Developed joint (with NOAA) mitigation strategies for NPOESS climate sensors
 - NASA-NOAA study for OSTP
 - NRC/SSB Workshop (science impacts, priorities, approaches)
 - Limb Sensor restored to OMPS on NPP; CERES being restored to NPP
- Discussions with International Partners
 - Determine common interests, complementary capabilities
 - JAXA/METI, CNES, CSA, ESA, CEOS, WMO/SP, DLR meetings held
 - Bilateral new mission working groups initiating (CNES, JAXA, DLR)
- Implemented "Early Mission" workshops
 - Confirm/refine match between science objective and notional mission
 - Determine necessary "context" measurements for science objective
 - Community involvement, HQ led
 - Workshops comleted Summer 2007 for SMAP, CLARREO, ICESat-II, DESDynI reports available online
- Targeted Instrument Incubator Program (IIP) solicitation to Decadal Survey missions (all 3 tiers)

Beginning to Move Out on SMAP and ICESat II with progressively smaller

26

ROSES 08 Summary

Element	Name	Due Date	Est. Am't/Yr (\$M)	Est. # Sel.	Funding period (yrs)
A.2	Terrestrial Ecology	TBD	TBD	TBD	TBD
A.4	Land Cover/Land Use Change	10/1/08	2	5 to 12	4
A.5	Biodiversity (new)	6/26/08	1.75	~7 to 10	3
	Ocean Biology and				
A.6	Biogeochemistry	6/2/08	~2.5	~ 10 to 20	4 or shorter
A.7	Modeling, Analysis, and Prediction	5/23/08	~8	~ 30 to 40	4
A.8	Physical Oceanography	6/26/08	~1.5	~ 10	4
A.9	Ocean Salinity Science Team (new)	10/30/08		~15	4
A. 7	NASA Energy and Water Cycle	10/30/08	~2	~15	4
A.13	Study - Water Quality (new)	8/19/08	~1.5	~7	4 or shorter
	Atmospheric Composition:				
A.14	Laboratory Research	6/16/08	~ 3	~ 15 to 20	3
	Atmospheric Compsition: Surface, Balloon, and Airborne				
A.15	Observations	7/15/08	~ 8	~ 30 to 25	4
A.16	Hurricane Science Research	5/16/08	~ 1.6	~ 10 (+ 5 @\$20K)	4
A.17	Advanced Concepts in Space Geodesy	TBD (Y/N)	TBD	TBD	TBD
A.18	Decision Support Through Earth Science Research Results	8/13/08	~6	20 to 23	up tp 4
A.19	Earth Sciene Applications Feasibility Studies	8/27/08	~1	9 to 15	1 to 1.5
A.20	Advanced information Systems Technology	8/29/08	TBD	TBD	TBD
A .21	Adanced Component Technology	TBD	TBD	TBD	TBD

NRC Study: Earth Observations from Space -The First 50 Years of Scientific Achievement

- Report Conclusions (summarized)
 - Daily synoptic view of Earth from space has revolutionized Earth studies and helped society manage environment and resources
 - Long time series are required and the value of data sets increases with time
 - Scientific advances result from science-technology synergy, and societal benefit of measurements increases with increasing accuracy
 - Have indisputable benefit of multiple synergistic observations (satellite and non-satellite) linked with models
 - To achieve full benefit of observations, need infrastructure (models, computing, ground networks, personnel)
 - Full and open access to global data capitalizes on investment
 - Space observations have catalyzed interdisciplinary science and can be expected to lead to remarkable discoveries in the future
- Summary Statement : "The decadal survey and this committee both recommend that the nation's commitment to continue Earth observations from space be renewed."

Summary

- NASA Earth Science program addresses fundamental scientific questions and important societal objectives in support of Administration initiatives (climate, Earth observations, oceans)
- NASA research advances climate research and contributes to national and international assessments
- NASA results are proving critical in documenting changing climate and its global impacts, as well as supporting improvements of models
- NASA is moving forward with missions in formulation and development and beginning to move out on NRC decadal survey

