JAXA SOLAR-C mission

JAXA SOLAR-C Working Group Saku Tsuneta (WG chair) Tansei (Path finder mission)

Hinotori (ASTRO-A) 188 kg, 1981

Non-thermal acceleration

- Hard-Xray imaging with rotation modulation collimator 10 arcsec
- Bragg crystal spectrometer
- •SXS, HXS

With NASA, UK

Yohkoh (SOLAR-A) 390 kg, 1991

- Non-thermal acceleration and plasma heating
- •HXR Fourier telescope (J) 7 arcsec
- •Soft X-ray telescope (J/US) •XRT (US, Japan) 5arcsec
- •Bragg spectrometer (J, US, UK)

WBS

Solar physics from space in Japan

With NASA, UK

Hinode (SOLAR-B) ~ 900kg, 2006 Magnetic fields with corona

- SOT (Japan, US) 0.2 arcsec
- 2arcsec
 - •EIS (UK, US, Japan) 2arcsec

Solar-B chronology

- 1994-1995 Ad-hoc working group at NAOJ
- 1995 Mission proposal (MUSES-C)
- 1996 Mission proposal2 (IR-mission)
- 1997 Mission proposal3 (finally won)
 =parallel activity in US and UK==
- 1998 New start with basic research \
- 1999-2001 Proto-model design/fab./test
- 2001-2004 Flight-model design/fab./test
- 2005-2006 Final test/launch
- 2006 PV Observations start

Strong international collaboration for SOLAR-B over 8 years 3 space agencies, 11 organizations in 4 countries

Solar physics from space in Japan

Yohkoh (1991- 2001) With NASA/PPARC

Two SOLAR-C mission concepts under study

- *Plan A: Out-of-ecliptic magnetic/X-ray and helioseismic observations* of the polar and the equatorial regions to investigate properties of the polar region, meridional flow and magnetic structure inside the Sun to the base of the convection zone.
- *Plan B*: High spatial resolution, *high throughput, high cadence* spectroscopic (polarimetric) and X-ray observations *seamlessly from photosphere to corona* to investigate magnetism of the Sun and its role in heating and dynamism of solar atmosphere.
- Launch Date: Japanese fiscal year 2016 (provisional)
 - Expects joint observations with highly complementary missions
 - NASA SDO (whole sun field of view)
 - ESA&NASA Solar Orbiter (Insitu and stereo obs with SOLAR-C)
 - NASA Solar probe (In-situ)

What is going on in polar region ? Source of fast solar wind Location of global poloidal fields sink of meridional flow

High speed solar wind

Hinode XRT High coronal Activity in polar region

2006/11/23 00:47:25 XRT Al_poly filter exp. 16385msec

Cirtain etal 2007

Polar landscape kG field

Hinode Polar Landscape 2007 March 16 Magnetic Field Strength

Plan-A: Exploration of polar region, internal structure and solar dynamo *The Sun as a star*

- Scientific objective
 - Measure meridional flow at high latitudes, and see where it turns downwards
 - Detect magneto-sound speed anomaly located in the tachocline region (*flux tube/sheet imaging in tachocline*)
 - Observe the vector magnetic fields of photosphere and chromosphere and coronal imaging in X-ray/EUV
 - Obtain acoustic speed and angular rotation speed distribution in the polar region
 - Understand acceleration mechanism of fast solar wind
 - Monitor total irradiance (optional)
 - Study influence of the Sun to heliosphere
- Model payload
 - Photospheric and chromospheric dopplergram
 - Stokes-polarimeter for photosphere and chromosphere
 - X-ray/EUV imager
 - Optional: total irradiance monitor, in-site instruments, and coronagraph

Plan-A: A new possibility Imaging of flux tubes in tachocline

A high-inclination orbit and dual observations

Observe Doppler velocity at high latitudes without undesired projection
Observe waves penetrating deep into the sun with dual stations.

Plan A Orbit and Engine Trade-off

- Case 1: Ion engine + Earth swing-by
- Case 2: Ion engine + Earth swing-by + Venus swing-by
- Case 3: Chemical engine + Jupiter swing-by
- Case 4: Chemical engine + Jupiter swing-by + Earth swing-by
- <Trade-off items>

flight time until starting observation, achievable inclination, observational timing, payload mass, thermal design, tele-communication link, etc.

- ex.) One possible solution of <u>Case 1</u> assumes,
 - JAXA H2A launch
 - Initial mass = 1200kg.
 - Payload mass = 100kg.

Achieves Inclination (to the Solar equator) of 30 deg. in 2 years from the launch, 45 deg. in 5 years from the launch.

Observe both polar and equatorial Regions maintaining \sim 1AU distance

Plan-B brings new discovery space though enhanced spectroscopic capability seamlessly covering entire atmosphere

Chromosphere more dynamic than expected!

SOLAR-C Plan B From imaging to spectroscopy From visible to UV-visible-IR

Hinode and SOLAR-C Plan-B

• Hinode/SOLAR-C

- Demonstrates power of spectro-polarimetry from space
 - Significantly enhance spectro-polarimetric capabilities to UV and near-IR
- Dynamism of chromosphere is a major Hinode discovery. Chromospheric dynamics may generate disturbance to corona: new implication to coronal heating (Isobe et al 2008)
 - High time resolution, high throughput spectrometer
- Little diagnostic capability for chromosphere and transition regions
 - Seamless observations from photosphere to corona
- Scientific Objective
 - Obtain precise chromospheric and, if possible, coronal vector magnetic field maps in addition to photospheric magnetic maps with high spatial and temporal resolution
 - Obtain coronal 3-D magnetic field map from chromospheric vector field, predict location and evolution of neutral-sheets, dicontinuities for transient and stationary coronal heating and eruption
 - Reveal causal relationship of photosphere-chromosphere-transition regioncorona to understand coronal/chromospheric heating and dynamism
 - Understand the nature of *hidden magnetism*: Is the observed B tip of the iceberg?
 - Deepen Hinode discoveries with quantitative analysis: waves, turbulence, magnetic reconnection
 - Study influence of the Sun to heliosphere

Plan B model payload

- General
 - From imaging to spectroscopy
 - Concentrate best possible lines to represent each layer of atmosphere
 - High resolution, high S/N, and high time resolution
 - High throughput multi-object-spectrograph or equivalent needed
 - From visible to visible+UV+near IR
 - Seamless coverage of photosphere, chromosphere, TR and corona
- Model payload
 - Near IR-Visible-UV telescope TBD-1.1 micron
 - 50cm diffraction-limited telescope 0.1-0.4arcsec
 - Ultra-high resolution EUV/X-ray telescope
 - High resolution high throughput coronal spectroscopic capability
- Key point1 : Chromospheric, and if possible coronal spectropolarimetry for vector magnetic field observations
 - Needs He10830 or equivalent with Zeeman+Hanle sensitivity
 - Evaluate potentiality of UV and EUV lines for *Hanle-effect* diagnostics of chromosphere and corona
 - Closer to force-free layer: provide better BC for coronal field extrapolation: concern on the adequacy on photospheric BC
- Key point 2: High spatial and temporal resolution chromospheric and transition region spectroscopy for dynamics

Development of SOLAR-C concept

- JAXA SOLAR-C WG refines both plans, compare science, technology, and other constraints, and prioritize the two plans with international partners.
- International SOLAR-C science definition meeting
 - week of November 10 2008 at JAXA/ISAS-JSPEC
- Purpose of meeting
 - Refine science cases for plans A and B
 - Determine option for Plan-A orbit and engine for further study
 - Propose model science instruments and identify key technology issues
 - Discuss consistency and synergy with NASA and ESA plans
 - Form international sub working groups for specific critical issues
 - Establish connection with space weather

SOLAR C development schedule (provisional)

- FY2016 Launch
- FY2015
- FY2011~14
- FY2010
- FY2008~9

- S/C tests Flight and proto model Phase-A Concept study
- FY2007 JAXA SOLAR-C WG

(FY: Japan fiscal year starting April 1.)

- Note : Plan A orbit trans. period not accurate, being studied.
- Note : NASA decadal plan beyond SDO not available.
- Note : ESA SOLAR ORBITER reach 0.22AU on summer of 2018.

Justification for mid-2010s launch

- Plan A satellite has to reach an observing point around 2020 to be ready for the solar maximum and polar field reversal.
- Joint observations with highly complementary missions
 - NASA SDO (whole sun field of view)
 - ESA Solar Orbiter
 - NASA Solar Probe
- Continuity in solar physics research in Japan requires mission approximately every 10 years
 - Hinode launched in 2006.
 - Hinode provides new data on the solar maximum Sun around 2010.
- Avoid vacuum in solar physics.

Summary

- Solar physics community in Japan has so far developed 3 solar missions over past 25 years.
- We recognize that success of Hinode and Yohkoh is due to strong international support.
- Solar physics community and related-disciplines in Japan strongly desire and endorse one of the SOLAR-C mission concept to be realized in mid-2010s.
- The JAXA SOLAR-C working group invites US and European participation to the SOLAR-C program, following our remarkable history of collaboration.

SOLAR-C web site

http://hinode.nao.ac.jp/SOLAR-C/index_e.html