Voyage to Venus Mission

Target Standard Algebra

- Describe, extend, and make generalizations about geometric and numeric patterns
- Represent and analyze patterns and functions using words, tables, and graphs
- Model problem situations with objects and use representations such as graphs, tables, and equations to draw conclusions

Related Standard Representation

- Create and use representations to organize, record, and communicate mathematical ideas
- Select, apply, and translate among mathematical representations to solve problems
- Use representations to model and interpret physical, social, and mathematical phenomena

Prior Knowledge

- Measurement
- Estimation to the nearest cm
- Contour maps

Teaching Plan

Purpose

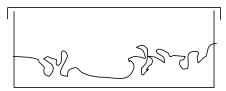
To collect, organize, and analyze data to generate a model that can be used for a possible landing site on Venus.

Materials

Graph paper

Skewers

Contour maps


Activity Sheet: Mission: Voyage to Venus...

To be made in advance by teacher:

- Shoe boxes with simulated Venus terrain inside them using any of the following: Newspaper, cups, rocks, tape, foil, etc...
- Play dough, using flour, salt, oil, cream of tartar, food coloring, and water (recipe provided under Day 3)

Background

The teacher should make the Venus boxes in advance. Begin by creating a simulation of the surface of Venus in the bottom of a shoebox using any handy materials. Be sure to create at least two flat areas for the students to choose as an appropriate landing site. For example:

Possible side view of inside of shoebox

Use graph paper or create a grid with coordinates on top of the shoebox. Punch holes with a small nail at the intersection of the grid lines for the entire surface of the box.

Implementation

Cooperative teams of two are appropriate for this activity. Students should switch between the two roles of measurer and recorder.

Day 1

Have students use bamboo skewers to simulate radar signals bouncing off the Venusian surface. The students will poke the skewers in the pre-existing nail holes of the shoebox in a systematic way to record the elevation of the surface. Students measure and record how far the skewer goes into the box before hitting 'Venus'. *note Bbe sure students recognize that they are measuring the distance from the top of the box lid to the surface of Venus.*

It may be helpful to create a table as follows:

Coordinat X	e Locations Y	Distance on Skewer (cm)
		(0)

Day 2

Develop individual contour maps using the team data. Record data on graph paper. Discuss and develop the various view representations of their model. *For example: Aerial view and cross section.*

Day 3

Using their data, the teams re-construct a 3-D model of the Venusian terrain using Play-DoughTM. The recipe for Play-DoughTM is as follows:

cup flour
cup salt
tablespoon oil
teaspoons cream of tartar
food coloring
cup water

Mix ingredients and cook until it forms a ball and all mushy spots are gone. Knead slightly. Store in an airtight container.

Day 4

Students are given a scale model to use as one parameter for determining the landing site. Other options may be to use classroom odds and ends to create a craft of their own design fitting specified dimensional requirements. For example: $2cm \ x \ 2cm \ x \ 2c$ —like gumdrops or centimeter cubes. note ® models of Venus Pathfinder Spacecraft can be made from scissors, tape, and or glue and 8.5" by 11" paper by downloading a small file (use the 'less sharp GIF version) from <u>http://Venus3.jpl.nasa.gov:80/MPF/mpf/education/cutouts.html</u>.

Day 5

Using their models and their data (re-analyze), the teams now determine the landing sites based upon a model craft. The teams must defend their choices using their data and their models. *note* ® *there may be many possible sites.* A set of criteria may emerge from the students interaction and teacher guidance to determine what are acceptable locations or sites.

Name: Mission: Voyage to Venus Landing Proposal

Your mission: To identify a landing site on Venus for your exploring spacecraft.

Mission Landing Proposal

List landing coordinates and explain your choices below.

Choice 1:

The landing site coordinates are (_____, ___) The surface of my first landing choice can be described as:

Choice 2:

The landing site coordinates are (_____, ___) The surface of my second landing choice can be described as:

Why is choice 1 your top selection? Explain why you choice 1 is better than choice 2.

Proposal Presentation

Present your proposal to Mission Control. Include a map and/or model of the landscape of Venus that you investigated with two landing sites labeled. (Model spaceships may be used.)

An image of the surface of Venus from the Venera-9 mission, found at: http://www.seds.org/nineplanets/nineplanets/venus.html

NASA/MSU AstroMath p. 3

Communication 3-5