E-Print Archive

There are 3882 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Subject will be restored when possible  

Takashi Minoshima   Submitted: 2007-10-03 02:05

We study the non-thermal emissions in a solar flare occurring on 2003 May 29 by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This flare shows several typical behaviors of the HXR and microwave emissions: time delay of microwave peaks relative to HXR peaks, loop-top microwave and footpoint HXR sources, and a harder electron energy distribution inferred from the microwave spectrum than from the HXR spectrum. In addition, we found that the time profile of the spectral index of the higher-energy (gsim 100 keV) HXRs is similar to that of the microwaves, and is delayed from that of the lower-energy (lsim 100 keV) HXRs. We interpret these observations in terms of an electron transport model called trap-plus-precipitation. We numerically solved the spatially-homogeneous Fokker-Planck equation to determine electron evolution in energy and pitch-angle space. By comparing the behaviors of the HXR and microwave emissions predicted by the model with the observations, we discuss the pitch-angle distribution of the electrons injected into the flare site. We found that the observed spectral variations can qualitatively be explained if the injected electrons have a pitch-angle distribution concentrated perpendicular to the magnetic field lines rather than isotropic distribution.

Authors: T. Minoshima, T. Yokoyama, and N. Mitani
Projects: RHESSI

Publication Status: ApJ (accepted)
Last Modified: 2007-10-03 07:45
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Subject will be restored when possible

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University