Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves. II. Extended analysis and effect of magnetic twist |
|
Sergio Díaz-Suárez Submitted: 2022-07-14 02:45
It has been shown in a previous work that torsional Alfvén waves can drive turbulence in nonuniform coronal loops with a purely axial magnetic field. Here we explore the role of the magnetic twist. We model a coronal loop as a transversely nonuniform straight flux tube, anchored in the photosphere, and embedded in a uniform coronal environment. We consider that the magnetic field is twisted and control the strength of magnetic twist by a free parameter of the model. We excite the longitudinally fundamental mode of standing torsional Alfvén waves, whose temporal evolution is obtained by means of high-resolution three-dimensional ideal magnetohydrodynamic numerical simulations. We find that phase mixing of torsional Alfvén waves creates velocity shear in the direction perpendicular to the magnetic field lines. The velocity shear eventually triggers the Kelvin-Helmholtz instability (KHi). In weakly twisted magnetic tubes, the KHi is able to grow nonlinearly and, subsequently, turbulence is driven in the coronal loop in a similar manner as in the untwisted case. Provided that magnetic twist remains weak, the effect of magnetic twist is to delay the onset of the KHi and to slow down the development of turbulence. In contrast, magnetic tension can suppress the nonlinear growth of the KHi when magnetic twist is strong enough, even if the KHi has locally been excited by the phase-mixing shear. Thus, turbulence is not generated in strongly twisted loops.
Authors: S. Díaz-Suárez and R. Soler
Projects: None
|
Publication Status: Accepted for publication in A&A
Last Modified: 2022-07-15 09:51
|
 
 
|
|
Transition to turbulence in nonuniform coronal loops driven by torsional Alfvén waves |
|
Sergio Díaz-Suárez Submitted: 2021-02-15 04:43
Both observations and numerical simulations suggest that Alfvénic waves may carry sufficient energy to sustain the hot temperatures of the solar atmospheric plasma. However, the thermalization of wave energy is inefficient unless very short spatial scales are considered. Phase mixing is a mechanism that can take energy down to dissipation lengths, but it operates over too long a timescale. Here, we study how turbulence, driven by the nonlinear evolution of phase-mixed torsional Alfvén waves in coronal loops, is able to take wave energy down to the dissipative scales much faster than the theory of linear phase mixing predicts. We consider a simple model of a transversely nonuniform cylindrical flux tube with a constant axial magnetic field. The flux tube is perturbed by the fundamental mode of standing torsional Alfvén waves. We solved the three-dimensional (3D) ideal magnetohydrodynamics equations numerically to study the temporal evolution. Initially, torsional Alfvén waves undergo the process of phase mixing because of the transverse variation of density. After only few periods of torsional waves, azimuthal shear flows generated by phase mixing eventually trigger the Kelvin-Helmholtz instability (KHi), and the flux tube is subsequently driven to a turbulent state. Turbulence is very anisotropic and develops transversely only to the background magnetic field. The obtained power law for the energy cascade to small scales is compatible with theoretical predictions of nearly 2D weak Alfvénic turbulence. After the onset of turbulence, the effective Reynolds number decreases in the flux tube much faster than in the initial linear stage governed by phase mixing alone. We conclude that the nonlinear evolution of torsional Alfvén waves, and the associated KHi, is a viable mechanism for the onset of turbulence in coronal loops.
Authors: S. Díaz-Suárez; Roberto Soler
Projects: None
|
Publication Status: Accepted in Astronomy and Astrophysics
Last Modified: 2021-02-15 15:33
|
 
 
|
|
|
Key
|
 | Go to main E-Print page. |
 | Download Preprint. |
 | Submitters Homepage. |
 | Edit Entry. |
 | Delete abstract. |
|
|
|