E-Print Archive

There are 4490 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Nanoflare distributions over solar cycle 24 based on SDO/AIA differential emission measure observations  

Stefan Purkhart   Submitted: 2022-03-23 05:12

Nanoflares in quiet-Sun regions during solar cycle 24 are studied with the best available plasma diagnostics to derive their energy distribution and contribution to coronal heating during different levels of solar activity. Extreme ultraviolet (EUV) filters of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) were used. We analyzed 30 AIA/SDO image series between 2011 and 2018, each covering a 400 x 400 arcsec quiet-Sun field-of-view of over two hours with a 12-second cadence. Differential emission measure (DEM) analysis was used to derive the emission measure (EM) and temperature evolution for each pixel. We detected nanoflares as EM enhancements using a threshold-based algorithm and derived their thermal energy from the DEM observations. Nanoflare energy distributions follow power laws that show slight variations in steepness ( α = 2.02 to 2.47), but no correlation to the solar activity level. The combined nanoflare distribution of all data sets covers five orders of magnitude in event energies (1024 ~to~ 1029 ~erg) with a power-law index α =2.28 ±0.03. The derived mean energy flux of (3.7± 1.6)x 104~erg~cm-2 s-1 is one order of magnitude smaller than the coronal heating requirement. We found no correlation between the derived energy flux and solar activity. Analysis of the spatial distribution reveals clusters of high energy flux (up to 3x 105 ~erg~cm-2 s-1) surrounded by extended regions with lower activity. Comparisons with magnetograms from the Helioseismic and Magnetic Imager (HMI) demonstrate that high-activity clusters are preferentially located in the magnetic network and above regions of enhanced magnetic flux density. The steep power-law slope ( α >2) suggests that the total energy in the flare energy distribution is dominated by the smallest events, that is to say nanoflares. We demonstrate that in the quiet-Sun, the nanoflare distributions and their contribution to coronal heating does not vary over the solar cycle.

Authors: Stefan Purkhart and Astrid M. Veronig
Projects: SDO-AIA

Publication Status: A&A (in press)
Last Modified: 2022-03-23 13:13
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Nanoflare distributions over solar cycle 24 based on SDO/AIA differential emission measure observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University