E-Print Archive

There are 3784 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Subject will be restored when possible  

Graham Barnes   Submitted: 2007-09-06 17:46

Discriminant analysis is a statistical approach for assigning a measurement to one of several mutually exclusive groups. Presented here is an application of the approach to solar flare forecasting, adapted to provide the probability that a measurement belongs to either group, the groups in this case being solar active regions which produced a flare within 24 hours and those that remained flare quiet. The technique is demonstrated for a large database of vector magnetic field measurements obtained by the University of Hawai?i Imaging Vector Magnetograph. For a large combination of variables characterizing the photospheric magnetic field, the results are compared to a Bayesian approach for solar flare prediction, and to the method employed by the U.S. Space Environment Center (SEC). Although quantitative comparison is difficult as the present application provides active region (rather than whole-Sun) forecasts, and the present database covers only part of one solar cycle, the performance of the method appears comparable to the other approaches.

Authors: G. Barnes, K.D. Leka, E.A. Schumer and D.J. Della-Rose
Projects: None

Publication Status: published
Last Modified: 2007-09-07 10:19
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Photospheric Magnetic Field Properties of Flaring Versus Flare-Quiet Active Regions. III. Magnetic Charge Topology Models  

Graham Barnes   Submitted: 2006-06-09 13:32

A Magnetic Charge Topology (MCT) model is applied to time series of photospheric vector magnetic field data for seven active regions divided into epochs classified as flare-quiet and flare-productive. In an approach which parallels an earlier study by the authors using quantities describing the photospheric properties of the vector magnetic field, we define quantities derived from the MCT analysis that quantify the complexity and topology of the active region coronal fields. With the goal of distinguishing between flare-quiet and flare-imminent magnetic topology, the time series are initially displayed for three active regions for visual inspection with few clear distinguishing characteristics resulting. However, an analysis of all twenty-four epochs using the Discriminant Analysis statistical approach indicates that coronal field topology, derived from observed photospheric vertical field, may indeed hold relevant information for distinguishing these populations, although the small sample size precludes a definite conclusion. The variables derived from the characterization of coronal topology routinely result in higher probabilities of being able to distinguish between the two populations than the analogous variables derived for the photospheric field.

Authors: G. Barnes and K.D. Leka
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2006-06-14 11:23
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Implementing a Magnetic Charge Topology Model for Solar Active Regions  

Graham Barnes   Submitted: 2005-04-22 13:18

Information about the magnetic topology of the solar corona is crucial to understanding solar energetic events. One approach to characterizing the topology which has had some success is Magnetic Charge Topology, in which the topology is defined by partitioning the observed photospheric field into a set of discrete sources and determining which pairs are interlinked by coronal field lines. The level of topological activity is then quantified through the transfer of flux between regions of differing field line connectivity. We discuss in detail how to implement such a model for a time series of vector magnetograms, paying particular attention to distinguishing real evolution of the photospheric magnetic flux from changes due to variations in atmospheric seeing, as well as uncorrelated noise. We determine the reliability of our method and estimate the uncertainties in its results. We then demonstrate it through an application to NOAA active region 8210, which has been the subject of extensive previous study.

Authors: G. Barnes, D.W. Longcope & K.D. Leka
Projects: None

Publication Status: ApJ (accepted)
Last Modified: 2005-04-22 13:18
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Subject will be restored when possible
Photospheric Magnetic Field Properties of Flaring Versus Flare-Quiet Active Regions. III. Magnetic Charge Topology Models
Implementing a Magnetic Charge Topology Model for Solar Active Regions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University