Two-dimensional cellular automaton model for the evolution of active region coronal plasmas |
|
Marcelo Lopez-Fuentes Submitted: 2016-08-04 12:17
We study a 2D cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops (EBTEL) model to compute the response of the plasma to the heating events. Using the known response of the XRT telescope on board Hinode we also obtain synthetic data. The model obeys easy to understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in terms of the plasma cooling time, increases with strand length. We discuss the implications of our results for the problem of heating and evolution of active region coronal plasmas.
Authors: M. López Fuentes, J.A. Klimchuk
Projects: None
|
Publication Status: Published in ApJ, Volume 799, Issue 2, article id. 128
Last Modified: 2016-08-05 15:28
|
 
 
|
|
The temporal evolution of coronal loops observed by GOES-SXI |
|
Marcelo Lopez-Fuentes Submitted: 2006-11-10 08:29
We study the temporal evolution of coronal loops using data from the Solar X-ray Imager (SXI) on board of GOES-12. This instrument allows us to follow in detail the full lifetime of coronal loops. The observed light curves suggest three somewhat distinct evolutionary phases: rise, main, and decay. The durations and characteristic timescales of these phases are much longer than a cooling time and indicate that the loop-averaged heating rate increases slowly, reaches a maintenance level, and then decreases slowly. This suggests that a single heating mechanism operates for the entire lifetime of the loop. For monolithic loops, the loop-averaged heating rate is the intrinsic energy release rate of the heating mechanism. For loops that are bundles of impulsively heated strands, it is an indication of the frequency of occurrence of individual heating events, or nanoflares. We show that the timescale of the loop-averaged heating rate is proportional to the timescale of the observed intensity variation. The ratios of the radiative to conductive cooling times in the loops are somewhat less than 1, putting them intermediate between the values measured previously for hotter and cooler loops. Our results provide further support for the existence of a trend suggesting that all loops are heated by the same mechanism, or that different mechanisms have fundamental similarities (e.g., are all impulsive or are all steady with similar rates of heating).
Authors: M.C. Lopez Fuentes, J.A. Klimchuk, C.H. Mandrini
Projects: None
|
Publication Status: Accepted for publication in ApJ
Last Modified: 2006-11-10 10:17
|
 
 
|
|
|
Key
|
 | Go to main E-Print page. |
 | Download Preprint. |
 | Submitters Homepage. |
 | Edit Entry. |
 | Delete abstract. |
|
|
|