E-Print Archive

There are 3945 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Heating of an erupting prominence associated with a solar coronal mass ejection on 2012 January 27  

Jin-Yi Lee   Submitted: 2017-06-28 20:06

We investigate the heating of an erupting prominence and loops associated with a coronal mass ejection and X-class flare. The prominence is seen in absorption in EUV at the beginning of its eruption. Later the prominence changes to emission, which indicates heating of the erupting plasma. We find the densities of the erupting prominence using the absorption properties of hydrogen and helium in different passbands. We estimate the temperatures and densities of the erupting prominence and loops seen as emission features using the differential emission measure method, which uses both EUV and X-ray observations from the Atmospheric Imaging Assembly on board Solar Dynamics Observatory and the X-ray Telescope on board Hinode. We consider synthetic spectra using both photospheric and coronal abundances in these calculations. We verify the methods for the estimation of temperatures and densities for the erupting plasmas. Then we estimate the thermal, kinetic, radiative loss, thermal conduction, and heating energies of the erupting prominence and loops. We find that the heating of the erupting prominence and loop occurs strongly at early times in the eruption. This event shows a writhing motion of the erupting prominence, which may indicate a hot flux rope heated by thermal energy release during magnetic reconnection.

Authors: Jin-Yi Lee, John C. Raymond, Katharine K. Reeves, Yong-Jae Moon, and Kap-Sung Kim
Projects: None

Publication Status: Astrophysical Journal in press
Last Modified: 2017-06-29 12:33
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Mass and energy of erupting solar plasma observed with the X-Ray Telescope on Hinode  

Jin-Yi Lee   Submitted: 2014-11-11 06:05

We investigate seven eruptive plasma observations by Hinode/XRT. Their corresponding EUV and/or white light CME features are visible in some events. Five events are observed in several passbands in X-rays, which allows the determination of the eruptive plasma temperature using a filter ratio method. We find that the isothermal temperatures vary from 1.6 to 10 MK. These temperatures are an average weighted toward higher temperature plasma. We determine the mass constraints of eruptive plasmas by assuming simplified geometrical structures of the plasma with isothermal plasma temperatures. This method provides an upper limit to the masses of the observed eruptive plasmas in X-ray passbands since any clumping causes the overestimation of the mass. For the other two events, we assume the temperatures are at the maximum temperature of the XRT temperature response function, which gives a lower limit of the masses. We find that the masses in XRT, ~3x1013 - 5x1014 g, are smaller in their upper limit than total masses obtained by LASCO, ~1x1015 g. In addition, we estimate the radiative loss, thermal conduction, thermal, and kinetic energies of the eruptive plasma in X-rays. For four events, we find that the thermal conduction time scales are much shorter than the duration of eruption. This result implies that additional heating during the eruption may be required to explain the plasma observations in X-rays for the four events.

Authors: Jin-Yi Lee, John C. Raymond, Katharine K. Reeves, Yong-Jae Moon, and Kap-Sung Kim
Projects: None

Publication Status: ApJ in press
Last Modified: 2014-11-12 12:36
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Low ionization state plasma in CMEs  

Jin-Yi Lee   Submitted: 2012-09-06 20:29

The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) often observes low ionization state coronal mass ejection (CME) plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI (3x105K), C III (8x104K), LyA, and LyB, with the low ionization plasma confined to bright filaments or blobs that appear in small segments of the UVCS slit. On the other hand, in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in the magnetic clouds in interplanetary coronal mass ejections (ICME) events, while low ionization states are rarely seen. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME to be consistent with the small fraction of ACE ICMEs that show low ionization plasma, or whether the CME plasma must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show average covering factors below 10%. This indicates that the lack of low ionization state ICME plasmas observed by the ACE results from a small probability that the spacecraft passes through a region of low ionization plasma. We also find that the low ionization state plasma covering factors in faster CMEs are smaller than in slower CMEs.

Authors: Jin-Yi Lee and John C. Raymond
Projects: None

Publication Status: ApJ (in press)
Last Modified: 2012-09-07 07:19
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

The Role of Magnetic Topology in the Heating of Active Region Coronal Loops  

Jin-Yi Lee   Submitted: 2010-09-09 09:13

We investigate the evolution of coronal loop emission in the context of the coronal magnetic field topology. New modeling techniques allow us to investigate the magnetic field structure and energy release in active regions. Using these models and high resolution multi-wavelength coronal observations from the Transition Region and Coronal Explorer (TRACE) and the X-ray Telescope (XRT) on Hinode, we are able to establish a relationship between the light curves of coronal loops and their associated magnetic topologies for NOAA Active Region 10963. We examine loops that show both transient and steady emission, and we find that loops that show many transient brightenings are located in domains associated with a high number of separators. This topology provides an environment for continual impulsive heating events through magnetic reconnection at the separators. A loop with relatively constant X-ray and EUV emission, on the other hand, is located in domains that are not associated with separators. This result implies that larger-scale magnetic field reconnections are not involved in heating plasma in these regions, and the heating in these loops must come from another mechanism, such as small-scale reconnections (i.e., nanoflares) or wave heating. Additionally, we find that loops that undergo repeated transient brightenings are associated with separators that have enhanced free energy. In contrast, we find one case of an isolated transient brightening that seems to be associated with separators with a smaller free energy.

Authors: J.-Y. Lee, Graham Barnes, K. D. Leka, Katharine Reeves, Kelly Korreck, Leon Golub, and E. E. DeLuca
Projects: Hinode/XRT

Publication Status: Accepted for publication in ApJ
Last Modified: 2010-09-10 13:12
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Three Dimensional Structure and Energy Balance of a Coronal Mass Ejection  

Jin-Yi Lee   Submitted: 2008-10-27 17:03

The Ultraviolet Coronagraph Spectrometer (UVCS) observed Doppler shifted material of a partial Halo Coronal Mass Ejection (CME) on December 13 2001. The observed ratio of [O V]/O V] is a reliable density diagnostic important for assessing the state of the plasma. Earlier UVCS observations of CMEs found evidence that the ejected plasma is heated long after the eruption. We have investigated the heating rates, which represent a significant fraction of the CME energy budget. The parameterized heating and radiative and adiabatic cooling have been used to evaluate the temperature evolution of the CME material with a time dependent ionization state model. The functional form of a flux rope model for interplanetary magnetic clouds was also used to parameterize the heating. We find that continuous heating is required to match the UVCS observations. To match the O VI-bright knots, a higher heating rate is required such that the heating energy is greater than the kinetic energy. The temperatures for the knots bright in Ly α and C III emission indicate that smaller heating rates are required for those regions. In the context of the flux rope model, about 75% of the magnetic energy must go into heat in order to match the O VI observations. We derive tighter constraints on the heating than earlier analyses, and we show that thermal conduction with the Spitzer conductivity is not sufficient to account for the heating at large heights.

Authors: J.-Y. Lee, J. C. Raymond, Y.-K. Ko, and K.-S. Kim
Projects: None

Publication Status: Accepted for publication in ApJ
Last Modified: 2008-10-27 18:35
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Heating of an erupting prominence associated with a solar coronal mass ejection on 2012 January 27
Mass and energy of erupting solar plasma observed with the X-Ray Telescope on Hinode
Low ionization state plasma in CMEs
The Role of Magnetic Topology in the Heating of Active Region Coronal Loops
Three Dimensional Structure and Energy Balance of a Coronal Mass Ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University