E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Dynamics of braided coronal loops II: Cascade to multiple small-scale reconnection events  

David Iain Pontin   Submitted: 2010-04-12 08:35

Aims: Our aim is to investigate the resistive relaxation of a magnetic loop that contains braided magnetic flux but no net current or helicity. The loop is subject to line-tied boundary conditions. We investigate the dynamical processes that occur during this relaxation, in particular the magnetic reconnection that occurs, and discuss the nature of the final equilibrium. Methods: The three-dimensional evolution of a braided magnetic field is followed in a series of resistive MHD simulations. Results: It is found that, following an instability within the loop, a myriad of thin current layers forms, via a cascade-like process. This cascade becomes more developed and continues for a longer period of time for higher magnetic Reynolds number. During the cascade, magnetic flux is reconnected multiple times, with the level of this `multiple reconnection' positively correlated with the magnetic Reynolds number. Eventually the system evolves into a state with no more small-scale current layers. This final state is found to approximate a non-linear force-free field consisting of two flux tubes of oppositely-signed twist embedded in a uniform background field.

Authors: D. I. Pontin, A. L. Wilmot-Smith, G. Hornig and K. Galsgaard
Projects:

Publication Status: A&A (in press)
Last Modified: 2010-10-21 06:42
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Dynamics of braided coronal loops II: Cascade to multiple small-scale reconnection events

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University