E-Print Archive

There are 4491 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Resonant Absorption of Fast Magnetoacoustic Waves due to Coupling into the Slow and Alfvén Continua in the Solar Atmosphere  

Christopher Clack   Submitted: 2010-06-14 18:18

Resonant absorption of fast magnetoacoustic (FMA) waves in an inhomogeneous, weakly dissipative, one-dimensional planar, strongly anisotropic and dispersive plasma is investigated. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localised slow or Alfvén waves present in the inhomogeneous layer and are partly reflected, dissipated and transmitted by this region. The presented research aims to find the coefficient of wave energy absorption under solar chromospheric and coronal conditions. Numerical results are analyzed to find the coefficient of wave energy absorption at both the slow and Alfvén resonance positions. The mathematical derivations are based on the two simplifying assumptions that (i) nonlinearity is weak, and (ii) the thickness of the inhomogeneous layer is small in comparison to the wavelength of the wave, i.e. we employ the so-called long wavelength approximation. Slow resonance is found to be described by the nonlinear theory, while the dynamics at the Alfvén resonance can be described within the linear framework. We introduce a new concept of coupled resonances, which occurs when two different resonances are in close proximity to each other, causing the incoming wave to act as though it has been influenced by the two resonances simultaneously. Our results show that the wave energy absorption is heavily dependent on the angle of the incident wave in combination with the inclination angle of the equilibrium magnetic field. In addition, it is found that FMA waves are very efficiently absorbed at the Alfvén resonance under coronal conditions. Under chromospheric conditions the FMA waves are far less efficiently absorbed, despite an increase in efficiency due to the coupled resonances.

Authors: C. T. M. Clack, I. Ballai, M. Douglas
Projects: None

Publication Status: Accepted for Publication in Solar Physics
Last Modified: 2010-06-15 09:00
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Resonant Absorption of Fast Magnetoacoustic Waves due to Coupling into the Slow and Alfven Continua in the Solar Atmosphere

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University