E-Print Archive

There are 3977 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The Thermal Properties of Solar Flares over Three Solar Cycles Using GOES X-Ray Observations  

Daniel Ryan   Submitted: 2013-03-05 14:45

Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) on board the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated Temperature and Emission measure-Based Background Subtraction method (TEBBS), that builds on the methods of Bornmann. Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The TEBBS database of flare thermal plasma properties is publicly available at http://www.SolarMonitor.org/TEBBS/.

Authors: Ryan, Daniel F.; Milligan, Ryan O.; Gallagher, Peter T.; Dennis, Brian R.; Tolbert, A. Kim; Schwartz, Richard A.; Young, C. Alex
Projects: GOES X-rays

Publication Status: Published -- Ryan et al. 2012, ApJS, 202, 11
Last Modified: 2013-03-06 08:54
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

The Thermal Properties of Solar Flares over Three Solar Cycles Using GOES X-Ray Observations  

Daniel Ryan   Submitted: 2012-05-31 10:13

Solar flare X-ray emission results from rapidly increasing temperatures and emission measures in flaring active region loops. To date, observations from the X-Ray Sensor (XRS) onboard the Geostationary Operational Environmental Satellite (GOES) have been used to derive these properties, but have been limited by a number of factors, including the lack of a consistent background subtraction method capable of being automatically applied to large numbers of flares. In this paper, we describe an automated temperature and emission measure-based background subtraction method (TEBBS), which builds on the methods of Bornmann (1990). Our algorithm ensures that the derived temperature is always greater than the instrumental limit and the pre-flare background temperature, and that the temperature and emission measure are increasing during the flare rise phase. Additionally, TEBBS utilizes the improved estimates of GOES temperatures and emission measures from White et al. (2005). TEBBS was successfully applied to over 50,000 solar flares occurring over nearly three solar cycles (1980-2007), and used to create an extensive catalog of the solar flare thermal properties. We confirm that the peak emission measure and total radiative losses scale with background subtracted GOES X-ray flux as power-laws, while the peak temperature scales logarithmically. As expected, the peak emission measure shows an increasing trend with peak temperature, although the total radiative losses do not. While these results are comparable to previous studies, we find that flares of a given GOES class have lower peak temperatures and higher peak emission measures than previously reported. The resulting TEBBS database of thermal flare plasma properties is publicly available on Solar Monitor (www.solarmonitor.org/TEBBS/) and will be available on Heliophysics Integrated Observatory (www.helio-vo.eu).

Authors: Daniel F. Ryan, Ryan O. Milligan, Peter T. Gallagher, Brian R. Dennis, A. Kim Tolbert, Richard A. Schwartz, C. Alex Young
Projects: GOES X-rays

Publication Status: ApJS (accepted 2012-05-24)
Last Modified: 2012-05-31 16:01
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
The Thermal Properties of Solar Flares over Three Solar Cycles Using GOES X-Ray Observations
The Thermal Properties of Solar Flares over Three Solar Cycles Using GOES X-Ray Observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University