E-Print Archive

There are 4291 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Revised Results for Non-thermal Recombination Flare Hard X-Ray Emission  

Procheta Mallik   Submitted: 2010-02-24 12:01

Brown and Mallik (BM) recently showed that, for hot sources, recombination of non-thermal electrons (NTR) onto highly ionised heavy ions is not negligible compared to non-thermal bremsstrahlung (NTB) as a source of flare hard X-rays (HXRs) and so should be included in modelling non-thermal HXR flare emission. In view of major discrepancies between BM results for the THERMAL continua and those of the Chianti code and of RHESSI solar data, we critically re-examine and correct the BM analysis and modify the conclusions concerning the importance of NTR. Although the analytic Kramers expression used by BM is correct for the purely hydrogenic recombination cross section, the heuristic expressions used by BM to extend the Kramers expression beyond the `bare nucleus' case to which it applies had serious errors. BM results have therefore been recalculated using corrected expressions, which have been validated against the results of detailed calculations. At T ~ 10-30 MK the dominant ions are Fe 22+, 23+, 24+ for which BM erroneously overestimated NTR emission by around an order of magnitude. Contrary to the BM claim, NTR in hot flare plasmas does NOT dominate over NTB, although in some cases it can be comparable and so still very important in inversions of photon spectra to derive electron spectra, especially as NTR includes sharp edge features. The BM claim of dominance of NTR over NTB in deka-keV emission is incorrect due to a serious error in their analysis. However, the NTR contribution can still be large enough to demand inclusion in spectral fitting, the spectral edges having potentially serious effects on inversion of HXR spectra to infer fast electron spectra.

Authors: J.C. Brown, P.C.V. Mallik and N.R. Badnell
Projects: None

Publication Status: Condensed version to be published in A&A as an erratum
Last Modified: 2010-02-25 08:40
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostic  

Procheta Mallik   Submitted: 2007-06-20 05:24

Flare Hard X-Rays (HXRs) from non-thermal electrons are commonly treated as solely bremsstrahlung (f-f), recombination (f-b) being neglected. This assumption is shown to be substantially in error, especially in hot sources, mainly due to recombination onto Fe ions. We analyse the effects of including non-thermal recombination onto heavy elements on HXR spectra and electron diagnostics. Using Kramers hydrogenic cross sections with effective Z, we calculate f-f and f-b spectra for power-law electron spectra, in both thin and thick target limits, and for Maxwellians, with summation over all important ions. We find that non-thermal electron recombination, especially onto Fe, must, in general, be included together with f-f, for reliable spectral interpretation, when the HXR source is hot. f-b contribution is largest when the electron spectral index is large, and any low energy cut-off small. f-b spectra recombination edges mean a cut-off in F(E) appears as a HXR feature at Photon energy = Ec + Vz, offering an Ec diagnostic. Including f-b lowers, greatly in some cases, the F(E) needed for prescribed HXR fluxes and, even when small, seriously distorts F(E) inferred by inversion or forward fitting based on f-f alone. f-b recombination from non-thermal electrons can be an important contributor to HXR spectra and should be included in spectral analyses, especially for hot sources. Accurate results will require use of better cross sections than ours and consideration of source ionisation structure.

Authors: John C. Brown and Procheta C.V. Mallik
Projects: None

Publication Status: Submitted to A&A on 17 June 2007
Last Modified: 2007-06-20 08:38
Go to main E-Print page  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Revised Results for Non-thermal Recombination Flare Hard X-Ray Emission
Non-thermal recombination - a neglected source of flare hard X-rays and fast electron diagnostic

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University