E-Print Archive

There are 3882 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Solar energetic particles and radio burst emission  

Rositsa Miteva   Submitted: 2017-12-30 08:58

We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996-2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection) we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.

Authors: R. Miteva, S. W. Samwel and V. Krupar
Projects: None

Publication Status: Published by EDP Sciences 2017
Last Modified: 2018-01-03 11:40
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Comparison of 30 THz impulsive burst time development to microwaves, Hα, EUV, and GOES soft X-rays  

Rositsa Miteva   Submitted: 2016-09-19 03:13

The recent discovery of impulsive solar burst emission in the 30 THz band is raising new interpretation challenges. One event associated with a GOES M2 class flare has been observed simultaneously in microwaves, Hα, EUV, and soft X-ray bands. Although these new observations confirm some features found in the two prior known events, they exhibit time profile structure discrepancies between 30 THz, microwaves, and hard X-rays (as inferred from the Neupert effect). These results suggest a more complex relationship between 30 THz emission and radiation produced at other wavelength ranges. The multiple frequency emissions in the impulsive phase are likely to be produced at a common flaring site lower in the chromosphere. The 30 THz burst emission may be either part of a nonthermal radiation mechanism or due to the rapid thermal response to a beam of high-energy particles bombarding the dense solar atmosphere.

Authors: Miteva, R.; Kaufmann, P.; Cabezas, D. P.; Cassiano, M. M.; Fernandes, L. O. T.; Freeland, S. L.; Karlický, M.; Kerdraon, A.; Kudaka, A. S.; Luoni, M. L.; Marcon, R.; Raulin, J.-P.; Trottet, G.; White, S. M.
Projects: None

Publication Status: Astronomy & Astrophysics (2016), Volume 586, id.A91, 4 pp.
Last Modified: 2016-09-21 11:20
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs  

Rositsa Miteva   Submitted: 2014-02-27 01:54

We study the influence of the large-scale interplanetary magneticfield configuration on the solar energetic particles (SEPs) asdetected at different satellites near Earth and on the correlation oftheir peak intensities with the parent solar activity. We selected SEPevents associated with X- and M-class flares at western longitudes, inorder to ensure good magnetic connection to Earth. These events wereclassified into two categories according to the global interplanetarymagnetic field (IMF) configuration present during the SEP propagationto 1 AU: standard solar wind or interplanetary coronal mass ejections(ICMEs). Our analysis shows that around 20 % of all particle eventsare detected when the spacecraft is immersed in an ICME. Thecorrelation of the peak particle intensity with the projected speed ofthe SEP-associated coronal mass ejection is similar in the two IMFcategories of proton and electron events, ≈ 0.6. The SEP eventswithin ICMEs show stronger correlation between the peak protonintensity and the soft X-ray flux of the associated solar flare, withcorrelation coefficient r=0.67±0.13, compared to the SEP eventspropagating in the standard solar wind, r=0.36±0.13. The difference ismore pronounced for near-relativistic electrons. The main reason forthe different correlation behavior seems to be the larger spread ofthe flare longitude in the SEP sample detected in the solar wind ascompared to SEP events within ICMEs. We discuss to what extentobservational bias, different physical processes (particle injection,transport, etc.), and the IMF configuration can influence therelationship between SEPs and coronal activity.

Authors: Miteva, R.; Klein, K.-L.; Malandraki, O.; Dorrian, G.
Projects: GOES Particles

Publication Status: Solar Physics (accepted)
Last Modified: 2014-03-07 03:57
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Radio Signatures of Solar Energetic Particles During the 23rd Solar Cycle  

Rositsa Miteva   Submitted: 2014-02-27 01:50

We present the association rates between solar energetic particles (SEPs) and the radio emission signatures in the corona and IP space during the entire solar cycle 23. We selected SEPs associated with X and M-class flares from the visible solar hemisphere. All SEP events are also accompanied by coronal mass ejections. Here, we focus on the correlation between the SEP events and the appearance of radio type II, III and IV bursts on dynamic spectra. For this we used the available radio data from ground-based stations and the Wind/WAVES spacecraft. The associations are presented separately for SEP events accompanying activity in the eastern and western solar hemisphere. We find the highest association rate of SEP events to be with type III bursts, followed by types II and IV. Whereas for types III and IV no longitudinal dependence is noticed, these is a tendency for a higher SEP-association rate with type II bursts in the eastern hemisphere. A comparison with reports from previous studies is briefly discussed.

Authors: Miteva, R.; Klein, K.-L.; Samwel, S. W.; Nindos, A.; Kouloumvakos, A.; Reid, H.
Projects: Other

Publication Status: CEAB (accepted)
Last Modified: 2014-03-06 14:38
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Solar Energetic Particles and Associated EIT Disturbances in Solar Cycle 23  

Rositsa Miteva   Submitted: 2014-02-10 03:56

We explore the link between solar energetic particles (SEPs) observed at 1 AU and large-scale disturbances propagating in the solar corona, named after the Extreme ultraviolet Imaging Telescope (EIT) as EIT waves, which trace the lateral expansion of a coronal mass ejection (CME). A comprehensive search for SOHO/EIT waves was carried out for 179 SEP events during Solar Cycle 23 (1997-2006). 87% of the SEP events were found to be accompanied by EIT waves. In order to test if the EIT waves play a role in the SEP acceleration, we compared their extrapolated arrival time at the footpoint of the Parker spiral with the particle onset in the 26 eastern SEP events that had no direct magnetic connection to the Earth. We find that the onset of proton events was generally consistent with this scenario. However, in a number of cases the first near-relativistic electrons were detected too early. Furthermore, the electrons had in general only weakly anisotropic pitch-angle distributions. This poses a problem for the idea that the SEPs were accelerated by the EIT wave or in any other spatially confined region in the low corona. The presence of weak electron anisotropies in SEP events from the eastern hemisphere suggests that transport processes in interplanetary space, including cross-field diffusion, play a role in giving the SEPs access to a broad range of helio-longitudes.

Authors: Miteva, R., Klein, K.-L., Kienreich, I., Temmer, M., Veronig, A., Malandraki, O. E.
Projects: SoHO-EIT

Publication Status: Solar Physics (accepted)
Last Modified: 2014-03-06 14:41
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Solar energetic particles and radio burst emission
Comparison of 30 THz impulsive burst time development to microwaves, Hα, EUV, and GOES soft X-rays
Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs
Radio Signatures of Solar Energetic Particles During the 23rd Solar Cycle
Solar Energetic Particles and Associated EIT Disturbances in Solar Cycle 23

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University