E-Print Archive

There are 3882 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic Flux Cancelation as the Origin of Solar Quiet Region Pre-Jet Minifilaments  

Navdeep Panesar   Submitted: 2017-07-05 17:01

We investigate the origin of ten solar quiet region pre-jet minifilaments, using EUV images from SDO/AIA and magnetograms from SDO/HMI. We recently found (Panesar et al. 2016b) that quiet region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancelation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancelation between minority-polarity and majority-polarity flux patches. In each of ten pre-jet regions, we find that opposite-polarity patches of magnetic flux converge and cancel, with a flux reduction of 10-40% from before to after the minifilament appears. For our ten events, the minifilaments exist for periods ranging from 1.5 hr to two days before erupting to make a jet. Apparently, the flux cancelation builds highly sheared field that runs above and traces the neutral line, and the cool-transition-region-plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancelation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus our observations strongly support that quiet region magnetic flux cancelation results in both the formation of the pre-jet minifilament and its jet-driving eruption.

Authors: Navdeep K. Panesar, Alphonse C. Sterling, Ronald L. Moore
Projects: SDO-AIA

Publication Status: accepted for publication in ApJ
Last Modified: 2017-07-06 10:44
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Magnetic Flux Cancelation as the Trigger of Solar Quiet-region Coronal Jets  

Navdeep Panesar   Submitted: 2016-11-21 13:17

We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jet event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.

Authors: Navdeep K. Panesar, Alphonse C. Sterling, Ronald L. Moore, Prithi Chakrapani
Projects: SDO-AIA,SDO-HMI

Publication Status: Published in ApJ Letters
Last Modified: 2016-11-23 15:16
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Magnetic Flux Cancelation as the Origin of Solar Quiet Region Pre-Jet Minifilaments
Magnetic Flux Cancelation as the Trigger of Solar Quiet-region Coronal Jets

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University