E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Two-Phase Heating in Flaring Loops  

Chunming Zhu   Submitted: 2018-02-05 20:03

We analyze and model a C5.7 two-ribbon solar flare observed by SDO, Hinode and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their foot-points are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6,700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the foot-point. In each half loop, the heating rate consists of two phases, an intense impulsive heating followed by a low-rate heating persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of ''enthalpy-based thermal evolution of loops'' (EBTEL). In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in fifteen pass-bands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9x1030 ergs is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two fifth of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

Authors: Chunming Zhu, Jiong Qiu, Dana W Longcope

Publication Status: accepted by ApJ
Last Modified: 2018-02-08 16:20
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Two-Phase Heating in Flaring Loops

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University