E-Print Archive

There are 4122 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Characteristics of solar wind rotation  

KJ LI   Submitted: 2019-08-29 21:37

Over 54 years of hourly mean value of solar wind velocity from 27 Nov. 1963 to 31 Dec. 2017 are used to investigate characteristics of the rotation period of solar wind through auto-correlation analysis. Solar wind of high velocity is found to rotate faster than low-velocity wind, while its rotation rate increases with velocity increasing, but in contrast for solar wind of low velocity, its rotation rate decreases with velocity increasing. Our analysis shows that solar wind of a higher velocity statistically possesses a faster rotation rate for the entire solar wind. The yearly rotation rate of solar wind velocity does not follow the Schwable cycle, but it is significantly negatively correlated to yearly sunspot number when it leads by 3 years. Physical explanations are proposed to these findings.

Authors: KJ Li, W Feng
Projects: None

Publication Status: Accepted for publication in MNRAS
Last Modified: 2019-09-04 13:20
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 

Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?  

KJ LI   Submitted: 2019-04-16 19:26

Coronal heating is a big question for modern astronomy. Daily measurement of 985 solar spectral irradiances (SSIs) at the spectral intervals 1-39 nm and 116-2416 nm during March 1 2003 to October 28 2017 is utilized to investigate characteristics of solar rotation in the solar atmosphere by means of the Lomb  -  Scargle periodogram method to calculate their power spectra. The rotation period of coronal plasma is obtained to be 26.3 days, and that of the solar atmosphere at the bottom of the photosphere modulated by magnetic structures is 27.5 days. Here we report for the first time that unexpectedly the coronal atmosphere is found to rotate faster than the underlying photosphere. When time series of SSIs are divided into different cycles, and the ascending and descending periods of a solar cycle, rotation rate in the corona is also found to be larger than that in the photosphere, and this actually gives hidden evidence: it is small-scale magnetic activity that heats the corona.

Authors: KJ Li, JC Xu, ZQ Yin, W Feng
Projects: None

Publication Status: accepted for publication in ApJ
Last Modified: 2019-04-17 19:18
Go to main E-Print page  Edit Entry  Download Preprint  Delete Entry 


Key
Go to main E-Print pageGo to main E-Print page.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
Delete AbstractDelete abstract.

Abstracts by Author
Characteristics of solar wind rotation
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University