E-Print Archive

There are 4291 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Advanced Automated Solar Filament Detection and Characterization Code: Description, Performance, and Results View all abstracts by submitter

Pietro Bernasconi   Submitted: 2005-02-23 06:21

We present a code for automated detection, classification, and tracking of solar filaments in full-disk H-apha images that can contribute to Living With a Star science investigations and space weather forecasting. The program can reliably identify filaments; determine their chirality and other relevant parameters like filament area, length, and average orientation with respect to the equator. It is also capable of tracking the day-by-day evolution of filaments while they travel across the visible disk. The code was tested by analyzing daily Hα images taken at the Big Bear Solar Observatory from mid 2000 until beginning of 2005. It identified and established the chirality of thousands of filaments without human intervention. We compared the results with a list of filament proprieties manually compiled by Pevtsov et al. (2003) over the same period of time. The computer list matches Pevtsov’s list with a 72% accuracy. The code results confirm the hemispheric chirality rule stating that dextral filaments predominate in the north and sinistral ones predominate in the south. The main difference between the two lists is that the code finds significantly more filaments without an identifiable chirality. This may be due to a tendency of human operators to be biased, thereby assigning a chirality in less clear cases, while the code is totally unbiased. We also have found evidence that filaments obeying the chirality rule tend to be larger and last longer than the ones that do not follow the hemispherical rule. Filaments adhering to the hemispheric rule also tend to be more tilted toward the equator between latitudes 10° and 30°, than the ones that do not.

Authors: Bernasconi, P.N, Rust, D.M., Hakim, D.
Projects: None

Publication Status: accepted for publication in Solar Physics
Last Modified: 2005-02-23 06:21
Go to main E-Print page  Footpoint excitation of standing acoustic waves in coronal loops  Observations of H-alpha Intensity Oscillations in a Flare Ribbon  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University