E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Magnetic twist and writhe of delta active regions View all abstracts by submitter

Tian Lirong   Submitted: 2005-02-24 16:06

We have selected 104 active regions with a delta magnetic configuration from 1996 to 2002 to study how important a role the kink instability plays in such active regions. In this study, we employ the systematic tilt angle of each active region as a proxy for the writhe of a fluxtube and the force-free parameter, α best, as a proxy for the magnetic field twist in the fluxtube. It is found that 65-67% of the active regions have the same sign of twist and writhe. About 34% (32%) of the active regions violate (follow) the Hale-Nicholson and Joy's Laws (HNJL) but follow (violate) the hemispheric helicity rule (HHR). Sixty-one (61) of the 104 active regions studied each produced more than five large flares. Active regions violating HNJL, but following HHR, have a much stronger tendency to produce X-class flares and/or strong proton events. Comparing with previous studies for active regions with well-defined (simpler) bipolar magnetic configuration, it is found that the numbers following both HNJL and HHR are significantly lower in the delta configuration case, while numbers violating one of the laws and the rule significantly increase with the increase of the magnetic complexity of the active regions. These results support the prediction for the presence of a kink instability, that the twist and writhe of the magnetic fields exhibit the same sign for delta active regions (Linton et al, 1998, 1999, and Fan et al., 1999). Finally, we analyze possible origins of the twist and writhe of the magnetic fields for the active regions studied.

Authors: Tian, L., Alexander, D., Liu, Y., Yang, J.
Projects: None

Publication Status: Solar Physics (in press)
Last Modified: 2005-03-30 08:05
Go to main E-Print page  Particle Acceleration in Solar Flares and Escape into Interplanetary Space  Precision limits to emission line profile measuring experiments  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University