E-Print Archive

There are 3967 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Implementing a Magnetic Charge Topology Model for Solar Active Regions View all abstracts by submitter

Graham Barnes   Submitted: 2005-04-22 13:18

Information about the magnetic topology of the solar corona is crucial to understanding solar energetic events. One approach to characterizing the topology which has had some success is Magnetic Charge Topology, in which the topology is defined by partitioning the observed photospheric field into a set of discrete sources and determining which pairs are interlinked by coronal field lines. The level of topological activity is then quantified through the transfer of flux between regions of differing field line connectivity. We discuss in detail how to implement such a model for a time series of vector magnetograms, paying particular attention to distinguishing real evolution of the photospheric magnetic flux from changes due to variations in atmospheric seeing, as well as uncorrelated noise. We determine the reliability of our method and estimate the uncertainties in its results. We then demonstrate it through an application to NOAA active region 8210, which has been the subject of extensive previous study.

Authors: G. Barnes, D.W. Longcope & K.D. Leka
Projects: None

Publication Status: ApJ (accepted)
Last Modified: 2005-04-22 13:18
Go to main E-Print page  Structure of magnetic fields in NOAA active regions 0486 and 0501 and in the associated interplanetary ejecta  Evolution of reconnection along an arcade of magnetic loops  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Drifting of the line-tied footpoints of CME flux-ropes
Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192
Oscillations accompanying a He I 10830 Å negative flare in a solar facula
The Origin of Major Solar Activity - Collisional Shearing Between Nonconjugated Polarities of Multiple Bipoles Emerging Within Active Regions
Probing the Puzzle of Behind-the-limb γ-Ray Flares: Data-driven Simulations of Magnetic Connectivity and CME-driven Shock Evolution
Transition-region explosive events produced by plasmoid instability
Flare Productivity of Major Flaring Solar Active Regions: A Time-series Study of Photospheric Magnetic Properties
Physical processes involved in the EUV "Surge" Event of 09 May 2012
Formation and Eruption of an Active Region Sigmoid. II. Magnetohydrodynamic Simulation of a Multistage Eruption
Evolution of Photospheric Vector Magnetic Field Associated with Moving Flare Ribbons As Seen By GST
On the Extrapolation of Magnetohydrostatic Equilibria on the Sun
Lyman Continuum Observations of Solar Flares Using SDO/EVE
Buoyancy-driven Magnetohydrodynamic Waves in a Partially Ionized Plasma
Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection
First Detection of Solar Flare Emission in Middle-Ultraviolet Balmer Continuum
First high-resolution look at the quiet Sun with ALMA at 3 mm
Dispersive shock waves in partially ionised plasmas
Frequency rising sub-THz emission from solar flare ribbons
Particle acceleration in coalescent and squashed magnetic islands I. Test particle approach
Statistical Analysis of Torus and Kink Instabilities in Solar Eruptions

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University