E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Observational Study of a Peculiar Solar Limb Event Occurred on 11 January 2002 View all abstracts by submitter

Hui Li   Submitted: 2009-04-22 18:57

On 11 January 2002, using the Multi-channel Infrared Solar Spectrograph at the Purple Mountain Observatory, we obtained Hα , CaII 8542 and HeI 10830 spectra and slit-jaw Hα images of a peculiar solar limb event. A close resemblance of its intensity to that of a small flare and the GOES X-ray flux indicates that it was an active prominence. However, its morphological evolution and velocity variation were different from general typical active prominences, such as limb flares, post-flare loops, surges and sprays. It started with the ejection of material from the flare site. In the early phase, the ejecta was as bright as a limb flare and kept rising until reaching the height of (8 - 10) imes104 km at an almost constant velocity of 91.7 km s-1 with its lower part always connected to the solar surface. EUV images in 195 Å show similar structure as in the H-apha line, indicating the coexistence of plasmas with temperatures differing more than two orders of magnitude. Later some material started to fall back to another bright area on the solar surface. The falling material did not show the collimated structure of surges or the arc structure of flaring arches. A red-shift velocity of more than 200 km s-1 was detected in a bright point close to the outer edge of the closed loop system formed later, which dispersed in a few minutes and became a part of the newly formed large loop. The ejected material did not leave the sun, indicating that the magnetic reconnection was not sufficient to remove the overlying field lines during the process. The spectral line profiles showed large widths and variable velocities, and therefore the line-pair method is not applicable to this event for the estimation of physical parameters.

Authors: Hui Li and Jianqi You
Projects: None

Publication Status: Solar Physics, in press
Last Modified: 2009-04-23 09:12
Go to main E-Print page  Hard X-ray Flare Source Sizes Measured with RHESSI  Calibration and initial results of the HeI D3 line flash spectrum obtained during the 2008 total solar eclipse  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University