E-Print Archive

There are 4236 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Observational Study of a Peculiar Solar Limb Event Occurred on 11 January 2002 View all abstracts by submitter

Hui Li   Submitted: 2009-04-22 18:57

On 11 January 2002, using the Multi-channel Infrared Solar Spectrograph at the Purple Mountain Observatory, we obtained Hα , CaII 8542 and HeI 10830 spectra and slit-jaw Hα images of a peculiar solar limb event. A close resemblance of its intensity to that of a small flare and the GOES X-ray flux indicates that it was an active prominence. However, its morphological evolution and velocity variation were different from general typical active prominences, such as limb flares, post-flare loops, surges and sprays. It started with the ejection of material from the flare site. In the early phase, the ejecta was as bright as a limb flare and kept rising until reaching the height of (8 - 10) imes104 km at an almost constant velocity of 91.7 km s-1 with its lower part always connected to the solar surface. EUV images in 195 Å show similar structure as in the H-apha line, indicating the coexistence of plasmas with temperatures differing more than two orders of magnitude. Later some material started to fall back to another bright area on the solar surface. The falling material did not show the collimated structure of surges or the arc structure of flaring arches. A red-shift velocity of more than 200 km s-1 was detected in a bright point close to the outer edge of the closed loop system formed later, which dispersed in a few minutes and became a part of the newly formed large loop. The ejected material did not leave the sun, indicating that the magnetic reconnection was not sufficient to remove the overlying field lines during the process. The spectral line profiles showed large widths and variable velocities, and therefore the line-pair method is not applicable to this event for the estimation of physical parameters.

Authors: Hui Li and Jianqi You
Projects: None

Publication Status: Solar Physics, in press
Last Modified: 2009-04-23 09:12
Go to main E-Print page  Hard X-ray Flare Source Sizes Measured with RHESSI  Calibration and initial results of the HeI D3 line flash spectrum obtained during the 2008 total solar eclipse  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Sunquake with a second-bounce, other sunquakes and emission associated with X9.3 flare of 6 September 2017. II. Proposed interpretation
f-mode strengthening from a localized bipolar subsurface magnetic field
Imaging and spectral study on the null point of a fan-spine structure during a solar flare
Forecasting Solar Cycle 25 Using Deep Neural Networks
An Observational Test of Solar Plasma Heating by Magnetic Flux Cancellation
The Drivers of Active Region Outflows into the Slow Solar Wind
HXR emission from an activated flux rope and subsequent evolution of an eruptive long duration solar flare
A Survey of Computational Tools in Solar Physics
Sunquake with a second bounce, other sunquakes, and emission associated with the X9.3 flare of 6 September 2017. I. Observations
The PDFI_SS Electric Field Inversion Software
Spatial Distribution of Origin of Umbral Waves in a Sunspot Umbra
A Unique Resource for Solar Flare Diagnostic Studies: the SMM Bent Crystal Spectrometer
Inferring Vector Magnetic Fields from Stokes Profiles of GST/NIRIS Using a Convolutional Neural Network
Global Energetics of Solar Flares, X. Petschek Reconnection Rate and Alfvén Mach Number of Magnetic Reconnection Outflows
Transverse coronal loop oscillations excited by homologous circular-ribbon flares
Temporal evolution of oscillating coronal loops
Intrusion of Magnetic Peninsula toward the Neighboring Opposite-polarity Region That Triggers the Largest Solar Flare in Solar Cycle 24
On the Relationship Between Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms
Standing kink waves in sigmoid solar coronal loops: implications for coronal seismology
Excitation of negative energy surface magnetohydrodynamic waves in an incompressible cylindrical plasma

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University