E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Review of Selected RHESSI Solar Results View all abstracts by submitter

Brian Dennis   Submitted: 2005-03-27 13:23

We review selected science results from RHESSI solar observations made since launch on 5 February 2002. A brief summary of the instrumentation is given followed by a sampling of the major science results obtained from the soft X-ray, hard X-ray, and gamma-ray energy domains. The thermal continuum measurements and detection of Fe-line features are discussed as they relate to parameters of the thermal flare plasma for several events, including microflares. Observations of X-ray looptop, and rising above-the-loop sources are discussed as they relate to standard models of eruptive events and the existence of a current sheet between the two. Hard X-ray spectra and images of footpoints and coronal sources are presented, showing how they can be used to separate thermal and nonthermal sources and determine the magnetic reconnection rate. Gamma-ray line images and spectra are presented as they relate to determining the location, spectra, and angular distribution of the accelerated ions and the temperature of the chromospheric target material. Finally, we discuss the overall energy budget for two of the larger events seen with RHESSI.

Authors: Brian R. Dennis, Hugh S. Hudson, and S¨am Krucker
Projects: RHESSI

Publication Status: Proceedings of CESRA Workshop 2004 The high energy solar corona: waves, eruptions, particles held on the Isle of Skye, Scotland, June 2004. Published in Lecture Notes in Physics, Berlin Springer Verlag, K.- L. Klein and A. L. MacKinnon, editors, vol. 725, page 33, 2007.
Last Modified: 2009-04-23 08:11
Go to main E-Print page  The Sun as a MHD generator: application of a new heating mechanism for the coronal loops and closed magnetic structures  What Gamma-Ray Deexcitation Lines Reveal about Solar Flares  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University