E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Non-force-free extrapolation of solar coronal magnetic field using vector magnetograms View all abstracts by submitter

qiang hu   Submitted: 2009-05-07 12:59

We report our recent improvement in non-force-free extrapolation of coronal magnetic field, using vector magnetograms. Based on the principle of minimum (energy) dissipation rate (MDR), a generally non-force-free magnetic field solution is expressed as the superposition of one potential field and two (constant- α ) linear force-free fields, with distinct α parameters. With a known potential field, the system is reduced to a second-order one that can be solved using one single-layer vector magnetogram. We devise an iteration procedure to determine the potential field, by achieving satisfactory agreement between the MDR-model computed and measured transverse magnetic field vectors on the bottom boundary. We illustrate this approach by applying it to real magnetograph measurement of solar active region AR10953. We show that the results are satisfactory as judged from the quantitative magnetic field measurement, and the behavior of the derived Lorentz force.

Authors: Qiang Hu, B. Dasgupta, M. DeRosa, J. Buechner, G.A. Gary
Projects: Hinode/SOT

Publication Status: submitted
Last Modified: 2009-05-07 13:31
Go to main E-Print page  The effect of loop curvature on coronal loop kink oscillations  Propagating waves in polar coronal holes as seen by SUMER and EIS  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University