E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
A Comparison Between Statistical Properties of Solar X-Ray Flares and Avalanche Predictions in Cellular Automata Statistical Flare Models View all abstracts by submitter

Manolis K. Georgoulis   Submitted: 2001-01-15 13:38

We perform a tentative comparison between the statistical properties of cellular automata statistical flare models including a highly variable, non-linear external driver, and the respective properties of the WATCH flare data base, constructed during the maximum of solar cycle 21. The model is based on the concept of Self-Organized Criticality (SOC). The frequency distributions built on the measured X-ray flare parameters show the following characteristics: (1) The measured parameters (total counts, peak count rates and, to a lesser extent, total duration) are found to be correlated to each other. Overall distribution functions of the first two parameters are robust power laws extending over several decades. The total-duration distribution function is represented by either two power laws or a power law with an exponential roll-over. (2) By sub-grouping the peak count rate and the total counts as functions of duration and constructing frequency distributions on these sub-groups, it is found that the slope systematically decreases with increasing duration. (3) No correlation is found between the elapsed time interval between successive bursts arising from the same active region and the peak intensity of the flare. Despite the inherent weaknesses of the SOC models to simulate realistically a number of physical processes thought to be at work in solar active regions and in flares' energy release, we show that the model is able to reproduce the bulk of the above statistical properties. We thus underline two main conclusions: (i) A global, statistical approach for the study of rapid energy dissipation and magnetic field line annihilation in complex, magnetized plasmas may be of equal importance with the localized, small-scale Magnetohydrodynamic (MHD) simulations, and (ii) refined SOC models are needed to establish a more physical connection between the cellular automata evolution rules and the observations. Key words: Sun: activity - Sun: corona - Sun: flares - Sun: magnetic fields - Sun: X-rays

Authors: Georgoulis, M. K., Vilmer, N. & Crosby, N. B.

Publication Status: A&A (in press)
Last Modified: 2001-01-15 13:38
Go to main E-Print page  Chromospheric Heating in the Late Phase of Two-ribbon Flares  Hemispheric Helicity Trend for Solar Cycle 23  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides
Blue wing enhancement of the chromospheric Mg II h and k lines in a solar flare
Finite amplitude transverse oscillations of a magnetic rope
Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and its Heating Evolution with VAULT2.0 and IRIS Observations
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
Implosive collapse about magnetic null points: A quantitative comparison between 2D and 3D nulls
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Strong non-radial propagation of energetic electrons in solar corona
Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory
LOFAR observations of the quiet solar corona
Statistics of "Cold" Early Impulsive Solar Flares in X-ray and Microwave domains
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673
An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
On the detection of coronal dimmings and the extraction of their characteristic properties
Plasma diagnostics of coronal dimming events
Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating
Observationally quantified reconnection providing a viable mechanism for active region coronal heating

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University