E-Print Archive

There are 3947 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
A Comparison Between Statistical Properties of Solar X-Ray Flares and Avalanche Predictions in Cellular Automata Statistical Flare Models View all abstracts by submitter

Manolis K. Georgoulis   Submitted: 2001-01-15 13:38

We perform a tentative comparison between the statistical properties of cellular automata statistical flare models including a highly variable, non-linear external driver, and the respective properties of the WATCH flare data base, constructed during the maximum of solar cycle 21. The model is based on the concept of Self-Organized Criticality (SOC). The frequency distributions built on the measured X-ray flare parameters show the following characteristics: (1) The measured parameters (total counts, peak count rates and, to a lesser extent, total duration) are found to be correlated to each other. Overall distribution functions of the first two parameters are robust power laws extending over several decades. The total-duration distribution function is represented by either two power laws or a power law with an exponential roll-over. (2) By sub-grouping the peak count rate and the total counts as functions of duration and constructing frequency distributions on these sub-groups, it is found that the slope systematically decreases with increasing duration. (3) No correlation is found between the elapsed time interval between successive bursts arising from the same active region and the peak intensity of the flare. Despite the inherent weaknesses of the SOC models to simulate realistically a number of physical processes thought to be at work in solar active regions and in flares' energy release, we show that the model is able to reproduce the bulk of the above statistical properties. We thus underline two main conclusions: (i) A global, statistical approach for the study of rapid energy dissipation and magnetic field line annihilation in complex, magnetized plasmas may be of equal importance with the localized, small-scale Magnetohydrodynamic (MHD) simulations, and (ii) refined SOC models are needed to establish a more physical connection between the cellular automata evolution rules and the observations. Key words: Sun: activity - Sun: corona - Sun: flares - Sun: magnetic fields - Sun: X-rays

Authors: Georgoulis, M. K., Vilmer, N. & Crosby, N. B.
Projects:

Publication Status: A&A (in press)
Last Modified: 2001-01-15 13:38
Go to main E-Print page  Chromospheric Heating in the Late Phase of Two-ribbon Flares  Hemispheric Helicity Trend for Solar Cycle 23  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Solar Eruptions, Forbush Decreases and Geomagnetic Disturbances from Outstanding Active Region 12673
Coronal hard X-ray sources revisited
Manifestations of bright points observed in G-band and Ca II H by Hinode/SOT
Propagation of Leaky MHD Waves at Discontinuities with Tilted Magnetic Field
Time variations of the non-potential and volume-threading magnetic helicities
Advances in mean-field dynamo theory and applications to astrophysical turbulence
Reverse Current Model for Coronal Mass Ejection Cavity Formation
Predictions of DKIST/DL-NIRSP Observations for an Off-limb Kink-unstable Coronal Loop
Exploring the biases of a new method based on minimum variance for interplanetary magnetic clouds
The non-modal onset of the tearing instability
SpatioTemporal Evolution and North-South Asymmetry of Quasi-Biennial Oscillations in the Coronal Fe XIV Emission
Corotating Shock Waves and the Solar-Wind Source of Energetic Ion Abundances: Power Laws in A/Q
Coronal condensations caused by magnetic reconnection between solar coronal loops
Measurement of Vector Magnetic Field in a Flare kernel with a Spectropolarimetric Observation in He I 10830 A
The Relation Between Escape and Scattering Times of Energetic Particles in a Turbulent Magnetized Plasma: Application to Solar Flares
Implications of loop-top origin for microwave, hard X-ray, and low-energy gamma-ray emissions from behind the limb flares
Solar radio emission as a disturbance of aeronautical radionavigation
A Diagnostic of Coronal Elemental Behavior during the Inverse FIP Effect in Solar Flares
Observations of Turbulent Magnetic Reconnection Within a Solar Current Sheet
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University