E-Print Archive

There are 3637 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3 View all abstracts by submitter

Astrid Veronig   Submitted: 2005-09-30 06:16

Recent RHESSI observations indicate an apparent altitude decrease of flare X-ray loop-top (LT) sources before changing to the commonly observed upward growth of the flare loop system. We performed a detailed study of the LT altitude decrease for one well observed flare in order to find further hints on the physics of this phenomenon and how it is related to the magnetic reconnection process in solar flares. RHESSI X-ray source motions in the 2003 November 3, X3.9 flare are studied together with complementary data from SXI, EIT, and Kanzelhohe H α . We particularly concentrate on the apparent altitude decrease of the RHESSI X-ray LT source early in the flare and combine kinematical and X-ray spectral analysis. Furthermore, we present simulations from a magnetic collapsing trap model embedded in a standard 2-D magnetic reconnection model of solar flares. We find that at higher photon energies the LT source is located at higher altitudes and shows higher downward velocities than at lower energies. The mean downward velocities range from 14 km s-1 in the RHESSI 10-15~keV energy band to 45 km s-1 in the 25-30 keV band. For this flare, the LT altitude decrease was also observed by the SXI instrument with a mean speed of 12 km s-1. RHESSI spectra indicate that during the time of LT altitude decrease the emission of the LT source is thermal bremsstrahlung from a ``superhot'' plasma with temperatures increasing from 35 MK to 45 MK and densities of the order of 1010 cm-3. The temperature does not significantly increase after this early (pre-impulsive superhot LT) phase, whereas the LT densities increase to a peak value of (3-4)cdot 1011 cm-3.} Modeling of a collapsing magnetic trap embedded in a standard 2D magnetic reconnection model can reproduce the key observational findings in case that the observed emission is thermal bremsstrahlung from the hot LT plasma. This is in accordance with the evaluated RHESSI spectra for this flare.

Authors: A.M. Veronig, M. Karlický, B. Vrsnak, M. Temmer, J. Magdalenic, B.R. Dennis, W. Otruba, W. Poetzi
Projects: RHESSI

Publication Status: A&A (accepted)
Last Modified: 2005-09-30 06:16
Go to main E-Print page  Multiwavelength Analysis of a Solar Flare on 2002 April 15  Multi-wavelength study of coronal waves associated with the CME-flare event of 03 November 2003  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Coronal loop density profile estimated by forward modelling of EUV intensity
The magnetic connectivity of coronal shocks to the visible solar surface during long-duration gamma-ray events
Dissipative instability in a partially ionised prominence slab
Significance testing for quasi-periodic pulsations in solar and stellar flares
High Resolution Observations of a White Light Flare with NST
Flare forecasting at the Met Office Space Weather Operations Centre
On the Effectiveness of Multi-Instrument Solar Flare Observations During Solar Cycle 24
The Grad-Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: Method Development and Benchmark Studies
Long-Period Intensity Pulsations in Coronal Loops Explained by Thermal Non-Equilibrium Cycles
Differences between Doppler velocities of ions and neutral atoms in a solar prominence
Interaction of Two Active Region Filaments Observed by NVST and SDO
On flare-CME characteristics from Sun to Earth combining remote-sensing image data with in-situ measurements supported by modeling
High-frequency transverse oscillations and intensity perturbations in spicular-type events
Sheath-Accumulating Propagation of Interplanetary Coronal Mass Ejection
Investigating the Wave Nature of the Outer Envelope of Halo Coronal Mass Ejections
Apparent and Intrinsic Evolution of Active Region Upflows
An Early Diagnostics of the Geoeffectiveness of Solar Eruptions from Photospheric Magnetic Flux Observations: The Transition from SOHO to SDO
Plasma Brightenings in a Failed Solar Filament Eruption
Interactive Multi-Instrument Database of Solar Flares
Moreton and EUV Waves Associated with an X1.0 Flare and CME Ejection

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University