E-Print Archive

There are 4290 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Empirical Constraints on Proton and Electron Heating in the Fast Solar Wind View all abstracts by submitter

Steven R Cranmer   Submitted: 2009-07-16 05:14

We analyze measured proton and electron temperatures in the high-speed solar wind in order to calculate the separate rates of heat deposition for protons and electrons. When comparing with other regions of the heliosphere, the fast solar wind has the lowest density and the least frequent Coulomb collisions. This makes the fast wind an optimal testing ground for studies of collisionless kinetic processes associated with the dissipation of plasma turbulence. Data from the Helios and Ulysses plasma instruments were collected to determine mean radial trends in the temperatures and the electron heat conduction flux between 0.29 and 5.4 AU. The derived heating rates apply specifically for these mean plasma properties and not for the full range of measured values around the mean. We found that the protons receive about 60% of the total plasma heating in the inner heliosphere, and that this fraction increases to approximately 80% by the orbit of Jupiter. A major factor affecting the uncertainty in this fraction is the uncertainty in the measured radial gradient of the electron heat conduction flux. The empirically derived partitioning of heat between protons and electrons is in rough agreement with theoretical predictions from a model of linear Vlasov wave damping. For a modeled power spectrum consisting only of Alfvénic fluctuations, the best agreement was found for a distribution of wavenumber vectors that evolves toward isotropy as distance increases.

Authors: Cranmer, S. R., Matthaeus, W. H., Breech, B. A., and Kasper, J. C.
Projects: None

Publication Status: ApJ, in press, arXiv:0907.2650
Last Modified: 2009-07-16 08:34
Go to main E-Print page  Solar source of energetic particles in interplanetary space during the 2006 December 13 event  Characteristic Dependence of Umbral Dots on their Magnetic Structure  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Proper Orthogonal and Dynamic Mode Decomposition of Sunspot Data.
Statistical Properties of Superflares on Solar-type Stars: Results Using All of the Kepler Primary Mission Data
Turbulent viscosity and effective magnetic Prandtl number from simulations of isotropically forced turbulence
Time and Charge-Sign Dependence of the Heliospheric Modulation of Cosmic Rays
Bayesian Analysis of Quasi-periodic Pulsations in Stellar Flares
Cause and Kinematics of a Jetlike CME
The role of small-scale surface motions in the transfer of twist to a solar jet from a remote stable flux rope
Sub-second time evolution of Type III solar radio burst sources at fundamental and harmonic frequencies
Magnetically coupled atmosphere, fast sausage MHD waves, and forced magnetic field reconnection during the SOL2014-09-10T17:45 flare
Differential rotation of the solar corona: A new data-adaptive multiwavelength approach
Magnetic Helicity Flux across Solar Active Region Photospheres: I. Hemispheric Sign Preference in Solar Cycle 24
Seismological constraints on the solar coronal heating function
The Coronal Global Evolutionary Model: Using HMI Vector Magnetogram and Doppler Data to Determine Coronal Magnetic Field Evolution
Radio and X-ray Observations of Short-lived Episodes of Electron Acceleration in a Solar Microflare
Research progress based on observations of the New Vacuum Solar Telescope
Dynamics evolution of a solar active-region filament from quasi-static state to eruption: rolling motion, untwisting motion, material transfer, and chirality
Microwave Study of a Solar Circular Ribbon Flare
Precise Formation-Flying Telescope in Target-Centric Orbit: the Solar Case
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University