E-Print Archive

There are 4100 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Observations of The Magnetic Reconnection Signature of An M2 Flare on 2000 March 23 View all abstracts by submitter

Leping Li   Submitted: 2009-07-26 22:57

Multi-wavelength observations of an M 2.0 flare event on 2000 March 23 in NOAA active region 8910 provide us a good chance to study the detailed structure and dynamics of the magnetic reconnection region. In the process of the flare, extreme ultraviolet (EUV) loops displayed two times of sideward motions upon a loop-top hard X-ray source with average velocities of 75 and 25.6 km s-1, respectively. Meanwhile part of the loops disappeared and new post-flare loops formed. We consider these two motions to be the observational evidence of reconnection inflow, and find an X-shaped structure upon the post-flare loops during the period of the second motion. Two separations of the flare ribbons are associated with these two sideward motions, with average velocities of 3.3 and 1.3 km s-1, separately. The sideward motions of the EUV loops and the separations of the flare ribbons are temporally consistent with two peaks of the X-ray flux. This indicates that there are two times of magnetic reconnection in the process of the flare. Using the observation of photospheric magnetic field, the velocities of the sideward motions and the separations, we deduce the corresponding coronal magnetic field strength to be about 13.2-15.2 G, and estimate the reconnection rates to be 0.05 and 0.02 for these two magnetic reconnection processes, respectively. Besides the sideward motions of EUV loops and the separations of flare ribbons, we also observe motions of bright points upward and downward along the EUV loops with velocities ranging from 45.4 to 556.7 km s-1, which are thought to be the plasmoids accelerated in the current sheet and ejected upward and downward when magnetic reconnection occurs and energy releases. A cloud of bright material flowing outward from the loop-top hard X-ray source with an average velocity of 51 km s-1 in the process of the flare may be accelerated by the tension force of the newly reconnected magnetic field lines. All the observations can be explained by schematic diagrams of magnetic reconnection.

Authors: Leping Li and Jun Zhang
Projects: TRACE

Publication Status: Accepted by ApJ
Last Modified: 2009-07-27 10:47
Go to main E-Print page  Space-Time Distribution of G-Band and Ca II H-Line Intensity Oscillations in Hinode/SOT-FG Observations  Quasi-Periodic Pulsations in Solar Flares  Edit Entry  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Birth of a Jet-driven Twin CME and Its Deflection from Remote Magnetic Fields
On the Origin of Solar Torsional Oscillations and Extended Solar Cycle
What Sets the Magnetic Field Strength and Cycle Period in Solar-type Stars?
Stereoscopic Observations of an Erupting Mini-filament Driven Two-Sided-Loop Jet and the Applications for Diagnosing Filament Magnetic field
Dynamic Processes of the Moreton Wave on 2014 March 29
Shock Heating Energy of Umbral Flashes Measured with Integral Field Unit Spectroscopy
Stealth Coronal Mass Ejections from Active Regions
Coronal Loop Scaling Laws for Various Forms of Parallel Heat Conduction
Structure of the transition region and the low corona from TRACE and SDO observations near the limb
Quantifying the relationship between Moreton-Ramsey waves and "EIT waves" using observations of 4 homologous wave events
Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance
Fundamental Transverse Vibrations of the Active Region Solar Corona
Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona
Magnetic helicity and eruptivity in active region 12673
Impulsive coronal heating from large-scale magnetic rearrangements: from IRIS to SDO/AIA
Probing the effect of cadence on the estimates of photospheric energy and helicity injections in eruptive active region NOAA AR 11158
The birth of a coronal mass ejection
Oscillations of the baseline of solar magnetic field and solar irradiance on a millennial timescale
Chromospheric cannonballs on the Sun
Magnetic Helicity from Multipolar Regions on the Solar Surface

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University