E-Print Archive

There are 3855 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
Bidirectional Type III Solar Radio Bursts View all abstracts by submitter

Arnold Benz   Submitted: 1999-11-04 13:02

Bidirectional coronal type III bursts are modeled by combining a model of coronal electron heating and beam generation via time-of-flight effects with semiquantitative estimates of quasilinear relaxation. Electromagnetic emissivit- emissivities are estimated by extending the recently developed theory of interplanetary type III bursts to coronal emissions, including its features of stochastic Langmuir-wave growth and three-wave interactions. The results are investigated for heating on open and closed coronal field lines and are compared with observations of normal, reverse-slope, bidirectional, and inverted-J and -U coronal type III radio bursts. Harmonic emission is predicted to dominate at plasma frequencies above roughly 100 MHz where the efficiency of fundamental emission falls off steeply, while its free-free reabsorption rises. The model also explains the observed trends in the likelihood of occurrence of normal, reverse-slope, and bidirectional coronal type III bursts.

Authors: P. A. Robinson and A. O. Benz
Projects: None

Publication Status: Solar Physics, 194, 371 - 391 (2000)
Last Modified: 2005-11-17 01:40
Go to main E-Print page  Particle Acceleration at the Sun and in the Heliosphere
  Heating Events Observed in the Quiet Corona  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation of a global coronal wave and its interaction with large-scale coronal magnetic structures
A New Tool for CME Arrival Time Prediction Using Machine Learning Algorithms: CAT-PUMA
Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides
Blue wing enhancement of the chromospheric Mg II h and k lines in a solar flare
Finite amplitude transverse oscillations of a magnetic rope
Bridging the Gap: Capturing the Lyα Counterpart of a Type-II Spicule and its Heating Evolution with VAULT2.0 and IRIS Observations
Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars
Implosive collapse about magnetic null points: A quantitative comparison between 2D and 3D nulls
Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE
Strong non-radial propagation of energetic electrons in solar corona
Developments of Multi-wavelength Spectro-Polarimeter on the Domeless Solar Telescope at Hida Observatory
LOFAR observations of the quiet solar corona
Statistics of "Cold" Early Impulsive Solar Flares in X-ray and Microwave domains
Successive X-class flares and coronal mass ejections driven by shearing motion and sunspot rotation in active region NOAA 12673
An Observationally-Constrained Model of a Flux Rope that Formed in the Solar Corona
The Duration of Energy Deposition on Unresolved Flaring Loops in the Solar Corona
On the detection of coronal dimmings and the extraction of their characteristic properties
Plasma diagnostics of coronal dimming events
Multi-fluid approach to high-frequency waves in plasmas. III. Nonlinear regime and plasma heating
Observationally quantified reconnection providing a viable mechanism for active region coronal heating

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University