E-Print Archive

There are 4035 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
High-Energy Emission from a Solar Flare in Hard X-rays and Microwaves View all abstracts by submitter

Natalia Meshalkina   Submitted: 2009-08-16 18:24

We investigate accelerated electron energy spectra for different sources in a large flare using simultaneous observations obtained with two instruments, the Nobeyama Radio Heliograph (NoRH) at 17 and 34 GHz, and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) at hard X-rays. This flare is one of the few in which emission up to energies exceeding 200 keV can be imaged in hard X-rays. Furthermore, we can investigate the spectra of individual sources up to this energy. We discuss and compare the HXR and microwave spectra and morphology. Although the event overall appears to correspond to the standard scenario with magnetic reconnection under an eruptive filament, several of its features do not seem to be consistent with popular flare models. In particular we find that (1) microwave emissions might be optically thick at high frequencies despite a low peak frequency in the total flux radio spectrum, presumably due to the inhomogeneity of the emitting source; (2) magnetic fields in high-frequency radio sources might be stronger than sometimes assumed; (3) sources spread over a very large volume can show matching evolution in their hard X-ray spectra that may provide a challenge to acceleration models. Our results emphasize the importance of studies of sunspot-associated flares and total flux measurements of radio bursts in the millimeter range.

Authors: M.R. Kundu, V.V. Grechnev, S.M. White, E.J. Schmahl, N.S. Meshalkina, L.K. Kashapova
Projects: None

Publication Status: Solar Physics, in press
Last Modified: 2009-08-17 08:51
Go to main E-Print page  Submillimeter and X-ray observations of an X Class flare  Time-Distance Solar Far-Side Imaging Using Three-Skip Acoustic Signals  Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University