E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
CALLISTO - A New Concept for Solar Radio Spectrometers View all abstracts by submitter

Arnold O. Benz   Submitted: 2004-10-19 06:44

A new radio spectrometer, CALLISTO, is presented. It is a dual-channel frequency-agile receiver based on commercially available consumer electronics. Its major characteristic is the low price for hardware and software, and the short assembly time, both two or more orders of magnitude below existing spectrometers. The instrument is sensitive at the physical limit and extremely stable. The total bandwidth is 825 MHz, and the width of individual channels is 300 kHz. A total of 1000 measurements can be made per second. The spectrometer is well suited for solar low-frequency radio observations pertinent to space weather research. Five instruments of the type were constructed until now and put into operation at several sites, including Bleien (Zurich) and NRAO (USA). First results in the 45 - 870 MHz range are presented. Some of them were recorded in a preliminary setup during the time of high solar activity in October and November 2003.

Authors: Benz, A.O., Monstein, C., and Meyer, H.
Projects:

Publication Status: Solar Physics, 226, 143 - 151 (2005)
Last Modified: 2005-11-21 03:23
Go to main E-Print page  Feature recognition in solar images (survey)  Survey on solar X-ray flares and associated coherent radio emissions  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University