E-Print Archive

There are 4002 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
An Extreme Solar Event of 20 January 2005: Properties of the Flare and the Origin of Energetic Particles View all abstracts by submitter

Victor Grechnev   Submitted: 2008-06-30 03:14

The famous extreme solar and particle event of 20 January 2005 is analyzed from two perspectives. Firstly, using multi-spectral data, we study temporal, spectral, and spatial features of the main phase of the flare, when the strongest emissions from microwaves up to 200 MeV gamma-rays were observed. Secondly, we relate our results to a long-standing controversy on the origin of solar energetic particles (SEP) arriving at Earth, i.e., acceleration in flares, or shocks ahead of coronal mass ejections (CMEs). Our analysis shows that all electromagnetic emissions from microwaves up to 2.22 MeV line gamma-rays during the main flare phase originated within a compact structure located just above sunspot umbrae. In particular, a huge (~105 sfu) radio burst with a high frequency maximum at 30 GHz was observed, indicating the presence of a large number of energetic electrons in very strong magnetic fields. Thus, protons and electrons responsible for various flare emissions during its main phase were accelerated within the magnetic field of the active region. The leading, impulsive parts of the ground-level enhancement (GLE), and highest-energy gamma-rays identified with pi^0-decay emission, are similar and closely correspond in time. The origin of the pi^0-decay gamma-rays is argued to be the same as that of lower-energy emissions, although this is not proven. On the other hand, we estimate the sky-plane speed of the CME to be 2000-2600 km s-1, i.e., high, but of the same order as preceding non-GLE-related CMEs from the same active region. Hence, the flare itself rather than the CME appears to determine the extreme nature of this event. We therefore conclude that the acceleration, at least, to sub-relativistic energies, of electrons and protons, responsible for both the major flare emissions and the leading spike of SEP/GLE by 07 UT, are likely to have occurred nearly simultaneously within the flare region. However, our analysis does not rule out a probable contribution from particles accelerated in the CME-driven shock for the leading GLE spike, which seemed to dominate at later stages of the SEP event.

Authors: Grechnev, V. V., Kurt, V. G., Chertok, I. M., Uralov A. M. , Nakajima, H., Altyntsev A. T., Belov, A. V., Yushkov, B. Yu., Kuznetsov, S. N., Kashapova, L. K., Meshalkina, N. S., Prestage, N. P.

Publication Status: Solar Physics, v. 252(1), pp. 149-177, 2008, DOI: 10.1007/s11207-008-9245-1. The original publication is available at www.springerlink.com
Last Modified: 2009-09-02 00:05
Go to main E-Print page  Coronal Tomography  Subject will be restored when possible  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2003 Solar Physics Group - Montana State University