E-Print Archive

There are 4282 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
* News 04/04/20 * The archive is using a new backend database. This has thrown up a few SQL errors in the last few days. If you have any issues please email adavey@nso.edu with either the number of eprint you are trying to edit or a link to your preprint.

Turbulence, Complexity, and Solar Flares View all abstracts by submitter

R.T.James McAteer   Submitted: 2009-09-30 09:42

The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this

Authors: R. T. James McAteer, Peter T. Gallagher, Paul A. Conlon
Projects: GONG,Mount Wilson Observatory,SoHO-MDI

Publication Status: Advances in Space Science Research
Last Modified: 2009-10-01 06:31
Go to main E-Print page  Numerical simulation of dark lanes in post-flare supra-arcade  Signatures of Interchange Reconnection:  STEREO, ACE and Hinode Observations Combined  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Propagation Effects in Quiet Sun Observations at Meter Wavelengths
Twin Null-Point-Associated Major Eruptive Three-Ribbon Flares with Unusual Microwave Spectra
Trajectory Determination for Coronal Ejecta Observed by WISPR/Parker Solar Probe
Recurring Homologous Solar Eruptions in NOAA AR 11429
Resonant absorption: transformation of compressive motions into vortical motion
The depth and the vertical extent of the energy deposition layer in a medium-class solar flare
Helicity proxies from linear polarisation of solar active regions
The Submillimeter Active Region Excess Brightness Temperature during Solar Cycles 23 and 24
Nanoflare Diagnostics from Magnetohydrodynamic Heating Profiles
The Solar Orbiter mission - Science Overview
Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations
Image Quality Assessment for Full-Disk Solar Observations with Generative Adversarial Networks
Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
Active Region Irradiance During Quiescent Periods: New Insights from Sun-as-a-star Spectra
Probing solar flare accelerated electron distributions with prospective X-ray polarimetry missions
Accelerating and Supersonic Density Fluctuations in Coronal Hole Plumes: Signature of Nascent Solar Winds
Sequential Lid Removal in a Triple-Decker Chain of CME-Producing Solar Eruptions
RESIK and RHESSI observations of the 20 September 2002 flare
Starspot mapping with adaptive parallel tempering I: Implementation of computational code
Heating and Eruption of a Solar Circular Ribbon Flare

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University