E-Print Archive

There are 4499 abstracts currently viewable.


Advanced Search
Main Page Add New E-Print Submitter
News Help/FAQ About Preferences
Manage Key Phrase
The effect of longitudinal flow on resonantly damped kink oscillations View all abstracts by submitter

Jaume Terradas   Submitted: 2009-12-22 02:40

The most promising mechanism acting towards damping the kink oscillations of coronal loops is resonant absorption. In this context most of previous studies neglected the effect of the obvious equilibrium flow along magnetic field lines. The flows are in general sub-Alfvénic and hence comparatively slow. Here we investigate the effect of an equilibrium flow on the resonant absorption of linear kink MHD waves in a cylindrical magnetic flux tube with the aim of determining the changes in the frequency of the forward and backward propagating waves and in the modification of the damping times due to the flow. A loop model with both the density and the longitudinal flow changing in the radial direction is considered. We use the thin tube thin boundary (TTTB) approximation in order to calculate the damping rates. The full resistive eigenvalue problem is also solved without assuming the TTTB approximation. Using the small ratio of flow and Alfvén speeds we derive simple analytical expressions to the damping rate. The analytical expressions are in good agreement with the resistive eigenmode calculations. Under typical coronal conditions the effect of the flow on the damped kink oscillations is small when the characteristic scale of the density layer is similar or smaller than the characteristic width of the velocity layer. However, in the opposite situation the damping rates can be significantly altered, specially for the backward propagating wave which is undamped while the forward wave is overdamped.

Authors: J. Terradas, M. Goossens, I. Ballai
Projects: None

Publication Status: Submitted to A&A
Last Modified: 2009-12-22 11:49
Go to main E-Print page  Chromospheric Magnetic Reconnection caused by Photospheric Flux Emergence: Implications for Jet-like Events Formation  Spiky Fine Structure of Type III-like Radio Bursts in Absorption   Edit Entry  Download Preprint  Delete Entry 

Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Small-scale solar jet formation and their associated waves and instabilities
Invited Review: Short-term Variability with the Observations from the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO): Insights into Flare Magnetism
A first look at the submillimeter Sun with ALMA
Data-driven modeling of solar coronal magnetic field evolution and eruptions
Properties and Energetics of Magnetic Reconnection: I. Evolution of Flare Ribbons
A new look at the frequency-dependent damping of slow-mode waves in the solar corona
What determines active region coronal plasma composition?
Characteristics and evolution of sheath and leading edge structures of interplanetary coronal mass ejections in the inner heliosphere based on Helios and Parker Solar Probe observations
Slow magnetoacoustic oscillations in stellar coronal loops
Kink Oscillation of a Flux Rope During a Failed Solar Eruption
A publicly available multi-observatory data set of an enhanced network patch from the Photosphere
Type IV Radio Bursts and Associated Active Regions in the Sunspot Cycle 24
Theory of Fluid Instabilities in Partially Ionized Plasmas: An Overview
Quasiperiodic Energy Release and Jets at the Base of Solar Coronal Plumes
The Coupling of an EUV Coronal Wave and Ion Acceleration in a Fermi-LAT Behind-the-Limb Solar Flare
Reconciling Power Law Slopes in Solar Flare and Nanoflare Size Distributions
A Model of Homologous Confined and Ejective Eruptions Involving Kink Instability and Flux Cancellation
Detection of stellar-like abundance anomalies in the slow solar wind
Magnetosheath jet occurrence rate in relation to CMEs and SIRs
Microwave Perspective on Magnetic Breakout Eruption

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey

© 2000-2020 Solar Physics Group - Montana State University