E-Print Archive

There are 4080 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The role of active region topology on excitation, trapping and damping of coronal loop oscillations View all abstracts by submitter

Mag Selwa   Submitted: 2009-12-01 04:04

We investigate the role of magnetic field topology on dense coronal loop oscillation by the means of 3D MHD numerical simulations of two models of idealized active regions (AR's). The first model of AR is initialized as a straight cylinder surrounded by the fieldlines of the same length and orientation. The second model consists of a potential dipole magnetic configuration and contains a loop with a higher density than its surroundings. Dipole fieldlines have position dependent length and orientation in contrary to straight ones. We study different ways of excitation of transverse loop oscillations by an external pulse and by a nearly eigenmode excitation implemented inside the loop. We find that perturbation acting directly on a single loop excites oscillations both in cylindrical and dipole loop. However, the leakage of the wave energy is larger in a curved loop compared to straight loop. External excitation of the whole AR is efficient in the excitation of oscillation in the straight field configuration, but results in less efficient excitation in the case of dipole field. We show that excitation of collective motion of straight fieldlines having the same wave-periods and planes of the oscillations requires much less energy than excitation of dipole fieldlines having position-dependent orientation and wave-periods and being excited individually, not having a collective mode of oscillation. We conclude that coherent motion of straight fieldlines is one of the factors that decrease the energy leakage from an oscillating loop, while individual motions of dipole fieldlines require more energy from the source to produce the loop oscillations, and also lead to higher damping rate compared to the straight field case. We discuss TRACE observations of coronal loop oscillations in view of our theoretical findings. We show several examples of time signatures of transversal loop oscillations observed by TRACE that agree with numerical simulations of externally excited oscillations.

Authors: M. Selwa, L. Ofman
Projects: None

Publication Status: Astrophysical Journal, submitted
Last Modified: 2010-01-22 06:17
Go to main E-Print page  Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon)  3-D numerical simulations of coronal loops oscillations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Magnetic Helicity from Multipolar Regions on the Solar Surface
The width distribution of solar coronal loops and strands - Are we hitting rock bottom ?
Exoplanet predictions based on harmonic orbit resonances
Order out of randomness: Self-organization processes in astrophysics
Convection-driven generation of ubiquitous coronal waves
The minimum energy principle applied to Parker's coronal braiding and nanoflaring scenario
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
Global energetics of solar flares: VIII. The Low-Energy Cutoff
Global Energetics of Solar Flares: VII. Aerodynamic Drag in Coronal Mass Ejections
Self-organized criticality in solar and stellar flares: Are extreme events scale-free ?
A Wavelet Based Approach to Solar-Terrestrial Coupling
Interplanetary Type IV Bursts
High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts
Detection of spike-like structures near the front of type-II burstsA
High resolution observations with Artemis-JLS, (II) Type IV associated intermediate drift bursts
Oscillation of a small Hα surge in a solar polar coronal hole
Radio Observations of the January 20, 2005 X-Class Event
Fine Structure of Metric Type-IV Radio Bursts Observed with the ARTEMIS-IV Radio Spectrograph: Association with Flares and Coronal Mass Ejections
Spectral Analysis of the September 2017 Solar Energetic Particle Events
Solar Energetic Particle Events Observed by the PAMELA Mission

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University