E-Print Archive

There are 4021 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The role of active region topology on excitation, trapping and damping of coronal loop oscillations View all abstracts by submitter

Mag Selwa   Submitted: 2009-12-01 04:04

We investigate the role of magnetic field topology on dense coronal loop oscillation by the means of 3D MHD numerical simulations of two models of idealized active regions (AR's). The first model of AR is initialized as a straight cylinder surrounded by the fieldlines of the same length and orientation. The second model consists of a potential dipole magnetic configuration and contains a loop with a higher density than its surroundings. Dipole fieldlines have position dependent length and orientation in contrary to straight ones. We study different ways of excitation of transverse loop oscillations by an external pulse and by a nearly eigenmode excitation implemented inside the loop. We find that perturbation acting directly on a single loop excites oscillations both in cylindrical and dipole loop. However, the leakage of the wave energy is larger in a curved loop compared to straight loop. External excitation of the whole AR is efficient in the excitation of oscillation in the straight field configuration, but results in less efficient excitation in the case of dipole field. We show that excitation of collective motion of straight fieldlines having the same wave-periods and planes of the oscillations requires much less energy than excitation of dipole fieldlines having position-dependent orientation and wave-periods and being excited individually, not having a collective mode of oscillation. We conclude that coherent motion of straight fieldlines is one of the factors that decrease the energy leakage from an oscillating loop, while individual motions of dipole fieldlines require more energy from the source to produce the loop oscillations, and also lead to higher damping rate compared to the straight field case. We discuss TRACE observations of coronal loop oscillations in view of our theoretical findings. We show several examples of time signatures of transversal loop oscillations observed by TRACE that agree with numerical simulations of externally excited oscillations.

Authors: M. Selwa, L. Ofman
Projects: None

Publication Status: Astrophysical Journal, submitted
Last Modified: 2010-01-22 06:17
Go to main E-Print page  Velocity vectors of a quiescent prominence observed by Hinode/SOT and the MSDP (Meudon)  3-D numerical simulations of coronal loops oscillations  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations
Persistent Quasi-Periodic Pulsations During a Large X-Class Solar Flare
Magnetic helicity and fluxes in an inhomogeneous α squared dynamo
Properties of the Diffuse Emission around Warm Loops in Solar Active Regions
Comparative Study of Microwave Polar Brightening, Coronal Holes, and Solar Wind Over the Solar Poles
3He-rich Solar Energetic Particles from Sunspot Jets
Relative magnetic field line helicity
Forbush decreases and Geomagnetic Storms during a Highly Disturbed Solar and Interplanetary Period, 4‐10 September 2017
Helical Twisting Number and Braiding Linkage Number of Solar Coronal Loops
Small-scale motions in solar filaments as the precursors of eruptions
Modeling of Heliospheric Modulation of Cosmic-Ray Positrons in a Very Quiet Heliosphere
Interpreting magnetic helicity flux in solar flux emergence
Transient Inverse-FIP Plasma Composition Evolution within a Confined Solar Flare
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University