E-Print Archive

There are 3812 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma View all abstracts by submitter

J. L. Ballester   Submitted: 2010-01-27 08:06

Solar prominences are partially ionised plasmas displaying flows and oscillations. These oscillations show time and spatial damping and, commonly, have been explained in terms of magnetohydrodynamic (MHD) waves. We study the spatial damping of linear non-adiabatic MHD waves in a flowing partially ionised plasma, having prominence-like physical properties. We consider single fluid equations for a partially ionised hydrogen plasma including in the energy equation optically thin radiation, thermal conduction by electrons and neutrals, and heating. Keeping the frequency real and fixed, we have solved the obtained dispersion relations for the complex wavenumber, k, and have analysed the behaviour of the damping length, wavelength and the ratio of the damping length to the wavelength, versus period, for Alfvén, fast, slow and thermal waves.

Authors: M. Carbonell, P. Forteza, R. Oliver, J. L. Ballester
Projects: None

Publication Status: A&A (submitted)
Last Modified: 2010-01-27 14:03
Go to main E-Print page  Laboratory simulations of astrophysical jets and solar coronal loops: new results  A Technique for Removing Background Features in SECCHI-EUVI He II 304 A Filtergrams: Application to the Filament Eruption of 22 May 2008  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Evolution of Photospheric Flow and Magnetic Fields Associated with The 2015 June 22 M6.5 Flare
Spatially inhomogeneous acceleration of electrons in solar flares
Probing Twisted Magnetic Field Using Microwave Observations in an M Class Solar Flare on 11 February, 2014
The origin, early evolution and predictability of solar eruptions
Polar Field Correction for HMI Line-of-Sight Synoptic Data
Relationship between Intensity of White-Light Flares and Proton Flux of Solar Energetic Particles
Spectroscopic Observations of a Current Sheet in a Solar Flare
IRIS Observations of Spicules and Structures Near the Solar Limb
Strong Transverse Photosphere Magnetic Fields and Twist in Light Bridge Dividing Delta Sunspot of Active Region 12673
Simultaneous observation of a flux rope eruption and magnetic reconnection during an X-class solar flare
Spectroscopic diagnostics of the non-Maxwellian κ-distributions using SDO/EVE observations of the 2012 March 7 X-class flare
Transient rotation of photospheric vector magnetic fields associated with a solar flare
Three-dimensional Forward-fit Modeling of the Hard X-Ray and Microwave Emissions of the 2015 June 22 M6.5 Flare
Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares
A time dependent relation between EUV solar flare light-curves from lines with differing formation temperatures
Understanding Breaks in Flare X-Ray Spectra: Evaluation of a Cospatial Collisional Return-current Model
Solar energetic particles and radio burst emission
A quasi-periodic fast-propagating magnetosonic wave associated with the eruption of a magnetic flux rope
Two-step solar filament eruptions
Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University