E-Print Archive

There are 4506 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Laboratory simulations of astrophysical jets and solar coronal loops: new results View all abstracts by submitter

Paul Bellan   Submitted: 2010-01-28 16:28

An experimental program underway at Caltech has produced plasmas where the shape is neither fixed by the vacuum chamber nor fixed by an external coil set, but instead is determined by self-organization. The plasma dynamics is highly reproducible and so can be studied in considerable detail even though the morphology of the plasma is both complex and time-dependent. A surprising result has been the observation that self-collimating MHD-driven plasma jets are ubiquitous and play a fundamental role in the self-organization. The jets can be considered lab-scale simulations of astrophysical jets and in addition are intimately related to solar coronal loops. The jets are driven by the combination of the axial component of the JxB force and the axial pressure gradient resulting from the non-uniform pinch force associated with the flared axial current density. Behavior is consistent with a model showing that collimation results from axial non-uniformity of the jet velocity. In particular, flow stagnation in the jet frame compresses frozen-in azimuthal magnetic flux, squeezes together toroidal magnetic field lines, thereby amplifying the embedded toroidal magnetic field, enhancing the pinch force, and hence causing collimation of the jet.

Authors: P. M. Bellan, D. Kumar, E. V. Stenson, S. K. P. Tripathi, G. S. Yun, and A. L. Moser
Projects: None

Publication Status: AIP Conf. Proc. (submitted), paper presented at Como Italy Symposium 2009
Last Modified: 2010-01-29 09:59
Go to main E-Print page  Evolution of Solar Magnetic Field and Associated Multiwavelength Phenomena:  Flare Events on 2003 November 20  The spatial damping of magnetohydrodynamic waves in a flowing partially ionised prominence plasma  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona
Statistical Analysis of Stellar Flares from the First Three Years of TESS Observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University