E-Print Archive

There are 4002 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Derivation of Stochastic Acceleration Model Characteristics for Solar Flares From RHESSI Hard X-Ray Observations View all abstracts by submitter

Qingrong Chen   Submitted: 2010-02-12 20:20

The model of stochastic acceleration of particles by turbulence has been successful in explaining many observed features of solar flares. Here we demonstrate a new method to obtain the accelerated electron spectrum and important acceleration model parameters from the high resolution hard X-ray observations provided by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). In our model, electrons accelerated at or very near the loop top produce thin target bremsstrahlung emission there and then escape downward producing thick target emission at the loop footpoints. Based on the electron flux spectral images obtained by the regularized inversion of the RHESSI count visibilities, we derive several important parameters for the acceleration model. We apply this procedure to the 2003 November 03 solar flare, which shows a loop top source up to 100-150 keV in hard X-ray with a relatively flat spectrum in addition to two footpoint sources. The results imply presence of strong scattering and a high density of turbulence energy with a steep spectrum in the acceleration region.

Authors: Vahé Petrosian, Qingrong Chen
Projects: RHESSI

Publication Status: Revised manuscript submitted to ApJL
Last Modified: 2010-02-13 10:12
Go to main E-Print page  RECENT RESULTS ON ZEBRA PATTERN IN SOLAR RADIO BURSTS  Three-Dimensional Propagation of Magnetohydrodynamic Waves in Solar Coronal Arcades  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The Role of a Tiny Brightening in a Huge Geo-effective Solar Eruption Leading to the St Patrick's Day Storm
A basal contribution from p-modes to the Alfvénic wave flux in the corona
Multiwavelength Study of Equatorial Coronal-Hole Jets
Non-thermal hydrogen Lyman line and continuum emission in solar flares generated by electron beams
Determining normal mode features from numerical simulations using CEOF analysis: I. Test case using transverse oscillations of a magnetic slab
Modelling the Effect of Mass-Draining on Prominence Eruptions
Transverse waves in coronal flux tubes with thick boundaries: The effect of longitudinal flows
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
Benchmarking CME arrival time and impact: Progress on metadata, metrics, and events
First Unambiguous Imaging of Large-Scale Quasi-Periodic Extreme-Ultraviolet Wave or Shock
Coronal Imaging with the Solar UltraViolet Imager
Investigation of pre-flare dynamics using the weighted horizontal magnetic gradient method: From small to major flare classes
Seismological determination of the Alfvén speed and plasma-beta in solar photospheric bright points
Dynamo Wave Patterns Inside the Sun Revealed by Torsional Oscillations
Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations
Dissipation scale lengths of density turbulence in the inner solar wind
On the Possibility of Generating Harmonics of the Electron Plasma Frequency in the Solar Atmosphere due to Explosive Instability in a System of Interpenetrating Electron and Ion Flows
Determination of the total accelerated electron rate and power using solar flare hard X-ray spectra
Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars
Can high-mode magnetohydrodynamic waves propagating in a spinning macrospicule be unstable due to the Kelvin-Helmholtz instability?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University