E-Print Archive

There are 4035 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Positions and sizes of X-ray solar flare sources View all abstracts by submitter

Eduard P. Kontar   Submitted: 2010-04-16 07:20

Aims. The positions and source sizes of X-ray sources taking into account Compton backscattering (albedo) are investigated. Methods. Using a Monte Carlo simulation of X-ray photon transport including photo-electric absorption and Compton scattering, we calculate the apparent source sizes and positions of X-ray sources at the solar disk for various source sizes, spectral indices and directivities of the primary source. Results. We show that the albedo effect can alter the true source positions and substantially increase the measured source sizes. The source positions are shifted by up to ~0.5? radially towards the disk centre and 5 arcsec source sizes can be two times larger even for an isotropic source (minimum albedo effect) at 1 Mm above the photosphere. The X-ray sources therefore should have minimum observed sizes, and thus their FWHM source size (2.35 times second-moment) will be as large as ~7? in the 20-50 keV range for a disk-centered point source at a height of 1 Mm (~1.4?) above the photosphere. The source size and position change is greater for flatter primary X-ray spectra, a stronger downward anisotropy, for sources closer to the solar disk centre, and between the energies of 30 and 50 keV. Conclusions. Albedo should be taken into account when X-ray footpoint positions, footpoint motions or source sizes from e.g. RHESSI or Yohkoh data are interpreted, and we suggest that footpoint sources should be larger in X-rays than in either optical or EUV ranges.

Authors: E. P. Kontar and N. L. S. Jeffrey
Projects: None,RHESSI,Yohkoh-HXT

Publication Status: A&A Letters in press
Last Modified: 2010-04-16 14:33
Go to main E-Print page  Propagation of a sausage soliton in the solar lower atmosphere observed by Hinode/SOT  Observation of kink instability during small B5.0 solar flare on 04 June, 2007  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Why Does the Solar Corona Abnormally Rotate Faster Than the Photosphere?
Impacts On Proton Fluxes Observed During Different Interplanetary Conditions
Coronal Loop Seismology Using Standing Kink Oscillations With a Lookup Table
Data-Optimized Coronal Field Model: I. Proof of Concept
Coronal Bright Points
Difference of source regions between fast and slow coronal mass ejections
Invited Review: Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution
Do Kepler superflare stars really include slowly-rotating Sun-like stars ? - Results using APO 3.5m telescope spectroscopic observations and Gaia-DR2 data -
Magnetically Induced Current Piston for Generating Extreme-ultraviolet Fronts in the Solar Corona
Magnetic Field Dynamics and Varying Plasma Emission in Large-scale Coronal Loops
Nonlinear Evolution of Ion Kinetic Instabilities in the Solar Wind
What determines the X-ray intensity and duration of a solar flare?
Fast Magnetoacoustic Wave Trains with Time-dependent Drivers
Three-dimensional reconstruction of CME-driven shock-streamer interaction from radio observations: a different take on the diagnostics of coronal magnetic fields
The soft X-ray spectrometer polarimeter SolpeX
Variable emission mechanism of a Type IV radio burst
Inference of magnetic field strength and density from damped transverse coronal waves
Frequency-Distance Structure of Solar Radio Sources Observed by LOFAR
The birth of a coronal mass ejection
Properties of slow magnetoacoustic oscillations of solar coronal loops by multi-instrumental observations

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University