E-Print Archive

There are 3928 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Free Magnetic Energy and Flare Productivity of Active Regions View all abstracts by submitter

Ju Jing   Submitted: 2010-03-02 14:19

In this study, the photospheric vector magnetograms, obtained with the Spectro-Polarimeter of the Solar Optical Telescope on board Hinode, are used as the boundary conditions to extrapolate the three-dimensional non-linear force-free (NLFF) coronal magnetic fields. The observed non-force-free photospheric magnetic fields are preprocessed towards the nearly force-free chromospheric magnetic fields. The performance of the preprocessing procedure is evaluated by comparing with chromospheric magnetic fields obtained by the Vector SpectroMagnetograph instrument located on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Tower. Then the weighted optimization method is applied to the preprocessed boundary data to extrapolate the NLFF fields with which we are able to estimate the free magnetic energy stored in the active regions. The magnitude scaling correlation between the free magnetic energy and the soft X-ray flare index of active regions is then studied. The latter quantifies the impending flare production of active regions over the subsequent 1-, 2- and 3-day time windows. Based on 75 samples, we find a positive correlation between the free energy and the flare index. We also study the temporal variation of free magnetic energy for three active regions, of which two are flare-active and one is flare-quiet during the observation over a period of several days. While the magnitude of free magnetic energy unambiguously differentiates between the flare-active and the flare-quiet regions, the temporal variation of free magnetic energy does not exhibit a clear and consistent pre-flare pattern. This may indicate that the trigger mechanism of flares is as important as the energy storage in active regions.

Authors: Ju Jing, Changyi Tan, Yuan Yuan, Benjamin Wang, Thomas Wiegelmann, Yan Xu, and Haimin Wang
Projects: None

Publication Status: Accepted for Publication in The Astrophysical Journal.
Last Modified: 2010-04-19 09:53
Go to main E-Print page  The Diagnostics of the Kappa-Distributions  from  EUV Spectra  Evidence of a Plasmoid-Looptop Interaction and Magnetic Inflows During a Solar Flare/CME Eruptive Event  Edit Entry  Download Preprint  Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
Diagnostic Analysis of the Solar Proton Flares of September 2017 by Their Radio Bursts
Densities Probed by Coronal Type III Radio Burst Imaging
The Minimum Energy Principle Applied to Parker's Coronal Braiding and Nanoflaring Scenario
Eruptions from quiet Sun coronal bright points. I. Observations
Evolution of the transverse density structure of oscillating coronal loops inferred by forward modelling of EUV intensity
Non-stationary quasi-periodic pulsations in solar and stellar flares
Lost and found sunquake in the 6 September 2011 flare caused by beam electrons
Nonkinematic solar dynamo models with double-cell meridional circulation
Solar Kinetic Energy and Cross Helicity Spectra
Collective Study of Polar Crown Filaments in the Past Four Solar Cycles
Highly Ionized Calcium and Argon X-ray Spectra from a Large Solar Flare
Detecting the solar new magnetic flux regions on the base of vector magnetograms
A Truly Global EUV Wave From the SOL2017-09-10 X8.2 Solar Flare-CME Eruption
ALTERNATIVE ZEBRA-STRUCTURE MODELS IN SOLAR RADIO EMISSION
Photospheric Shear Flows in Solar Active Regions and Their Relation to Flare Occurrence
Linear Polarization Features in the Quiet-Sun Photosphere: Structure and Dynamics
Solar Microflares Observed by SphinX and RHESSI
Two Kinds of Dynamic Behavior in a Quiescent Prominence Observed by the NVST
Resistively-limited current sheet implosions in planar anti-parallel (1D) and null-point containing (2D) magnetic field geometries
Is It Small-scale Weak Magnetic Activity That Effectively Heats the Upper Solar Atmosphere?

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2003 Solar Physics Group - Montana State University