E-Print Archive

There are 4507 abstracts currently viewable.


Search:

Advanced Search
Options
Main Page Add New E-Print Submitter
Information
Feedback
News Help/FAQ About Preferences
Manage Key Phrase
Notification
Measurements of the Coronal Acceleration Region of a Solar Flare View all abstracts by submitter

Säm Krucker   Submitted: 2010-04-30 12:53

The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph (NoRH) are used to investigate coronal hard X-ray and microwave emissions in the partially disk-occulted solar flare of December 31, 2007. The STEREO mission provides EUV images of the flare site at different viewing angles, establishing a two-ribbon flare geometry and occultation heights of the RHESSI and NoRH observations of ~16 Mm and ~25 Mm, respectively. Despite the occultation, intense hard X-ray emission up to ~80 keV occurs during the impulsive phase from a coronal source that is also seen in microwaves. The hard X-ray and microwave source during the impulsive phase is located ~6 Mm above thermal flare loops seen later at the soft X-ray peak time, similar in location to the above-the-loop-top source in the Masuda flare. A single non-thermal electron population with a power-law distribution (with spectral index of ~3.7 from ~16 keV up to the MeV range) radiating in both bremsstrahlung and gyrosynchrotron emission can explain the observed hard X-ray and microwave spectrum, respectively. This clearly establishes the non-thermal nature of the above-the-loop-top source. The large hard X-ray intensity requires a very large number (>5e35 above 16 keV) of suprathermal electrons to be present in this above-the-loop-top source. This is of the same order of magnitude as the number of ambient thermal electrons. We show that collisional losses of these accelerated electrons would heat all ambient electrons to superhot temperatures (ten's of keV) within seconds. Hence the standard scenario, with hard X-rays produced by a beam comprising the tail of a dominant thermal core plasma, does not work. Instead, all electrons in the above-the-loop-top source seem to be accelerated, suggesting that the above-the-loop-top source is itself the electron acceleration region.

Authors: Krucker, Hudson, Glesener, White, Masuda, Wuelser, Lin
Projects: RHESSI,STEREO

Publication Status: The Astrophysical Journal, Volume 714, Issue 2, pp. 1108-1119 (2010)
Last Modified: 2010-05-02 13:51
Go to main E-Print page  GeV Particle Acceleration in Solar Flares and Ground Level Enhancement (GLE) Events  Long-wavelength torsional modes of solar coronal plasma structures  Edit Entry  Download Preprint  Submitter's Homepage Delete Entry 

Key
Go to main E-Print pageGo to main E-Print page.
Previous AbstractPrevious Abstract.
Next AbstractNext Abstract.
Download PreprintDownload Preprint.
Submitter's HomepageSubmitters Homepage.
Edit EntryEdit Entry.
View All Abstracts By SubmitterView all abstracts by submitter.
Delete AbstractDelete abstract.

Latest Entries
The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere
Do periods of decayless kink oscillations of solar coronal loops depend on noise?
Automatic detection technique for solar filament oscillations in GONG data
Probing the Density Fine Structuring of the Solar Corona with Comet Lovejoy
Confined plasma transition from the solar atmosphere to the interplanetary medium
Extracting the Heliographic Coordinates of Coronal Rays using Images from WISPR/Parker Solar Probe
Two-spacecraft detection of short-period decayless kink oscillations of solar coronal loops
Genesis and Coronal-jet-generating Eruption of a Solar Minifilament Captured by IRIS Slit-raster Spectra
First detection of transverse vertical oscillation during the expansion of coronal loops
A New Position Calibration Method for MUSER Images
Sigmoid Formation Through Slippage of A Single J-shaped Coronal Loop
MHD Simulation of Homologous Eruptions from Solar Active Region 10930 Caused by Sunspot Rotation
Dropouts of Fully Stripped Ions in the Solar Wind: A Diagnostic for Wave Heating versus Reconnection
Plasma heating and nanoflare caused by slow-mode wave in a coronal loop
The Lyman-α Emission in a C1.4 Solar Flare Observed by the Extreme Ultraviolet Imager aboard Solar Orbiter
Imaging and Spectroscopic Observations of the Dynamic Processes in Limb Solar Flares
Evolution of the critical torus instability height and CME likelihood in solar active regions
A Magnetogram-matching Method for Energizing Magnetic Flux Ropes Toward Eruption
A 2D Model for Coronal Bright Points: Association with Spicules, UV bursts, Surges and EUV Coronal Jets
The relativistic solar particle event on 28 October 2021: Evidence of particle acceleration within and escape from the solar corona

Related Pages
MSU Solar Physics.
Max Millennium Science Mail Archive.
Max Millennium Message of the Day Mail Archive.
Max Millennium Flare Catalog

Archive Maintainer
Alisdair Davey



© 2000-2020 Solar Physics Group - Montana State University